Proteomics wrap-up

- Up to 8000-13000 proteins can be identified/quantified in a human tissue samples
- We are getting closer to comprehensive coverage of human proteome
- MS-based "identification of a protein" is actually identification of its coding gene
- We can not distinguish between individual protein variants (proteoforms)
- Only micrograms of the peptide sample are needed (mgs of tissue)
- Single-cell analysis is getting reasonable coverage (over 4000 IDs!)
- Specific methods for PTM analysis are available
- Information is semi-quantitative not absolute
- Some proteins remain under-represented in standard proteomic analyses

Proteomics of Membrane Proteins

Jiri Petrak, BIOCEV

- Integral membrane proteins intro and the peculiarities
- Prediction of TM segments, visualization
- Why do membrane proteins escape proteomic analyses?

- Glycopeptide enrichment
- Analysis of the membrane embedded segments
- Pitchfork strategy

• Membrane proteome of neuroendocrine tumors using The Pitchfork strategy

Integral membrane proteins Lipid-anchored membrane-associated

~ 20 000 human protein coding genes

INTEGRAL MEMBRANE PROTEINS

• alpha helix TM domain(s) (20-25 AA) + soluble domains

Number of predicted TM segments in human integral membrane proteins

Fagerberg et al. Proteomics 2011

Transferrin receptor protein 1 TFRC

760 AA 1 TM segment

Piezo-type mechanosensitive ion channel component 1 PIEZO4

INTEGRAL MEMBRANE PROTEINS

- alpha helix TM domain(s) (20-25 AA) + soluble domains
- low expression

Cellular abundance of transmembrane proteins is LOW (100-1000 copies/cell)

Beck et al., Mol Syst Biol. 2011 Nov 8;7:549.

INTEGRAL MEMBRANE PROTEINS

- alpha helix TM domain(s) (20-25 AA) + soluble domains
- low expression
- hydrophobic/amphipathic nature

Protein hydrophobicity

GRAVY SCORE – Grand average hydropathy (sum of ,,hydrofobicities" (-4.5 to - 4.5) of all AA/number of AA)

Kyte, J., and Doolittle, R.F. (1982) J.Mol.Biol. 157, 105-132

Hydrophobicity of AAs

Amino Acid Name	One Letter Code	Hydropathy Score
Isoleucine	I.	4.5
Valine	v	4.2
Leucine	L	3.8
Phenylalanine	F	2.8
Cysteine	С	2.5
Methionine	м	1.9
Alanine	Α	1.8
Glycine	G	-0.4
Threonine	т	-0.7
Tryptophan	w	-0.9
Serine	S	-0.8
Tyrosine	Y	-1.3
Proline	Р	-1.6
Histidine	н	-3.2
Glutamic acid	E	-3.5
Glutamine	Q	-3.5
Aspartic acid	D	-3.5
Asparagine	N	-3.5
Lysine	К	-3.9
Arginine	R	-4.5

AA typical for transmembrane α -helices:

"FAMILY VW" (G, S, C...)

The source of protein information (SwissProt/Uniprot)

UniProt (uniprot.org)

Prediction of TM domains via Hidden Markov Models (using FASTA sequence)

<u>TMHMM 2.0 - DTU Health Tech - Bioinformatic Services</u> (services.healthtech.dtu.dk/services/TMHMM-2.0)

Visualization of TM domain prediction (using FASTA sequence or accession number)

Protter - interactive protein feature visualization

(wlab.ethz.ch/protter)

Human Protein Atlas

The Human Protein Atlas (www.proteinatlas.org)

CD171 (P32004)

MVVALRYVWPLLLCSPCLLIQIPEEYEGHHVMEPPVITEQSPRRLVVFPTDDISLKCEASGKPEVQFRWTRDGVHFKPKEELGVTVYQSP HSGSFTITGNNSNFAQRFQGIYRCFASNKLGTAMSHEIRLMAEGAPKWPKETVKPVEVEEGESVVLPCNPPPSAEPLRIYWMNSKILHIKQ DERVTMGQNGNLYFANVLTSDNHSDYICHAHFPGTRTIIQKEPIDLRVKATNSMIDRKPRLLFPTNSSSHLVALQGQPLVLECIAEGFPTPTI KWLRPSGPMPADRVTYQNHNKTLQLLKVGEEDDGEYRCLAENSLGSARHAYYVTVEAAPYWLHKPQSHLYGPGETARLDCQVQGRPQ PEVTWRINGIPVEELAKDQKYRIQRGALILSNVQPSDTMVTQCEARNRHGLLLANAYIYVVQLPAKILTADNQTYMAVQGSTAYLLCKAFGA PVPSVQWLDEDGTTVLQDERFFPYANGTLGIRDLQANDTGRYFCLAANDQNNVTIMANLKVKDATQITQGPRSTIEKKGSRVTFTCQASF DPSLQPSITWRGDGRDLQELGDSDKYFIEDGRLVIHSLDYSDQGNYSCVASTELDVVESRAQLLVVGSPGPVPRLVLSDLHLLTQSQVRV SWSPAEDHNAPIEKYDIEFEDKEMAPEKWYSLGKVPGNQTSTTLKLSPYVHYTFRVTAINKYGPGEPSPVSETVVTPEAAPEKNPVDVKG EGNETTNMVITWKPLRWMDWNAPQVQYRVQWRPQGTRGPWQEQIVSDPFLVVSNTSTFVPYEIKVQAVNSQGKGPEPQVTIGYSGED YPQAIPELEGIEILNSSAVLVKWRPVDLAQVKGHLRGYNVTYWREGSQRKHSKRHIHKDHVVVPANTTSVILSGLRPYSSYHLEVQAFNGR GSGPASEFTFSTPEGVPGHPEALHLECQSNTSLLLRWQPPLSHNGVLTGYVLSYHPLDEGGKGQLSFNLRDPELRTHNLTDLSPHLRYR FQLQATTKEGPGEAIVREGGTMALSGISDFGNISATAGENYSVVSWVPKEGQCNFRFHILFKALGEEKGGASLSPQVVSYNQSSYTQWDL QPDTDYEIHLFKERMFRHQMAVKTNGTGRVRLPPAGFATE<mark>GWFIGFVSAIILLLVLILCFI</mark>KRSKGGKYSVKDKEDTQVDSEARPMKDET FGEYRSLESDNEEKAFGSSQPSLNGDIKPLGSDDSLADYGGSVDVQFNEDGSFIGQYSGKKEKEAAGGNDSSGATSPINPAVALE

Predicted TM segment

FAMILY VW +C +G +S

MVVALRYVWPLLLCSPCLLIQIPEEYEGHHVMEPPVITEQSPRRLVVFPTDDISLKCEASGKPEVQFRWTRDGVHFKPKEELGVTVYQSPHSGSFTITGNNSNFA QRFQGIYRCFASNKLGTAMSHEIRLMAEGAPKWPKETVKPVEVEEGESVVLPCNPPPSAEPLRIYWMNSKILHIKQDERVTMGQNGNLYFANVLTSDNHSDYI CHAHFPGTRTIIQKEPIDLRVKATNSMIDRKPRLLFPTNSSSHLVALQGQPLVLECIAEGFPTPTIKWLRPSGPMPADRVTYQNHNKTLQLLKVGEEDDGEYRCLA ENSLGSARHAYYVTVEAAPYWLHKPQSHLYGPGETARLDCQVQGRPQPEVTWRINGIPVEELAKDQKYRIQRGALILSNVQPSDTMVTQCEARNRHGLLLAN AYIYVVQLPAKILTADNQTYMAVQGSTAYLLCKAFGAPVPSVQWLDEDGTTVLQDERFFPYANGTLGIRDLQANDTGRYFCLAANDQNNVTIMANLKVKDAT QITQGPRSTIEKKGSRVTFTCQASFDPSLQPSITWRGDGRDLQELGDSDKYFIEDGRLVIHSLDYSDQGNYSCVASTELDVVESRAQLLVVGSPGPVPRLVLSDLH LLTQSQVRVSWSPAEDHNAPIEKYDIEFEDKEMAPEKWYSLGKVPGNQTSTTLKLSPYVHYTFRVTAINKYGPGEPSPVSETVVTPEAAPEKNPVDVKGEGNET TNMVITWKPLRWMDWNAPQVQYRVQWRPQGTRGPWQEQIVSDPFLVVSNTSTFVPYEIKVQAVNSQGKGPEPQVTIGYSGEDYPQAIPELEGIEILNSSAV LVKWRPVDLAQVKGHLRGYNVTYWREGSQRKHSKRHIHKDHVVVPANTTSVILSGLRPYSSYHLEVQAFNGRGSGPASEFTFSTPEGVPGHPEALHLECQSNT SLLLRWQPPLSHNGVLTGYVLSYHPLDEGGKGQLSFNLRDPELRTHNLTDLSPHLRYRFQLQATTKEGPGEAIVREGGTMALSGISDFGNISATAGENYSVVSW VPKEGQCNFRFHILFKALGEEKGGASLSPQYVSYNQSSYTQWDLQPDTDYEIHLFKERMFRHQMAVKTNGTGRVRLPPAGFAT EGWFIGFVSAILLLUVLLILCF IKRSKGGKYSVKDKEDTQVDSEARPMKDETFGEYRSLESDNEEKAFGSSQPSLNGDIKPLGSDDSLADYGGSVDVQFNEDGSFIGQYSGKKEKEAAGGNDSSG ATSPINPAVALE

Deletion

MVVALRYVWPLLLCSPCLLIQIPEEYEGHHVMEPPVITEQSPRRLVVFPTDDISLKCEASGKPEVQFRWTRDGVHFKPKEELGVTVYQSP HSGSFTITGNNSNFAQRFQGIYRCFASNKLGTAMSHEIRLMAEGAPKWPKETVKPVEVEEGESVVLPCNPPPSAEPLRIYWMNSKILHIKQ DERVTMGQNGNLYFANVLTSDNHSDYICHAHFPGTRTIIQKEPIDLRVKATNSMIDRKPRLLFPTNSSSHLVALQGQPLVLECIAEGFPTPTI KWLRPSGPMPADRVTYQNHNKTLQLLKVGEEDDGEYRCLAENSLGSARHAYYVTVEAAPYWLHKPQSHLYGPGETARLDCQVQGRPQ PEVTWRINGIPVEELAKDQKYRIQRGALILSNVQPSDTMVTQCEARNRHGLLLANAYIYVVQLPAKILTADNQTYMAVQGSTAY LLIVILCKAFGAPVPSVQWLDEDGTTVLQDERFFPYANGTLGIRDLQANDTGRYFCLAANDQNNVTIMANLKVKDATQITQGPRSTIEKKGS RVTFTCQASFDPSLQPSITWRGDGRDLQELGDSDKYFIEDGRLVIHSLDYSDQGNYSCVASTELDVVESRAQLLVVGSPGPVPRLVLSDL HLLTQSQVRVSWSPAEDHNAPIEKYDIEFEDKEMAPEKWYSLGKVPGNQTSTTLKLSPYVHYTFRVTAINKYGPGEPSPVSETVVTPEAA PEKNPVDVKGEGNETTNMVITWKPLRWMDWNAPQVQYRVQWRPQGTRGPWQEQIVSDPFLVVSNTSTFVPYEIKVQAVNSQGKGPEP QVTIGYSGEDYPQAIPELEGIEILNSSAVLVKWRPVDLAQVKGHLRGYNVTYWREGSQRKHSKRHIHKDHVVVPANTTSVILSGLRPYSSY HLEVQAFNGRGSGPASEFTFSTPEGVPGHPEALHLECQSNTSLLLRWQPPLSHNGVLTGYVLSYHPLDEGGKGQLSFNLRDPELRTHNL TDLSPHLRYRFQLQATTKEGPGEAIVREGGTMALSGISDFGNISATAGENYSVVSWVPKEGQCNFRFHILFKALGEEKGGASLSPQVSY NQSSYTQWDLQPDTDYEIHLFKERMFRHQMAVKTNGTGRVRLPPAGFATEGWFIGFVSAIILLLVLLILCFIKRSKGGKYSVKDKEDTQVD SEARPMKDETFGEYRSLESDNEEKAFGSSQPSLNGDIKPLGSDDSLADYGGSVDVQFNEDGSFIGQYSGKKEKEAAGGNDSSGATSPIN PAVALE

MVVALRYVWPLLLCSPCLLIQIPEEYEGH

IMPs - molecules with split personalities

hydrophobic

INTEGRAL MEMBRANE PROTEINS

- alpha helix TM domain(s) (20-25 AA) + soluble domains
- low expression
- hydrophobic/amphipathic nature
- scarcity of Arg, Lys in TM domains

A protein with 12 TM segments

MALSELALVRWLQESRRSRKLILFIVFLALLLDNMLLT VVVPIIPSYLYSIKHEKNATEIQTARPVHTASISDSFQ SIFSYYDNSTMVTGNATRDLTLHQTATQHMVTNASAVP SDCPSEDKDLLNENVQVGLLFASKATVQLITNPFIGLL TNRIGYPIPIFAGFCIMFVSTIMFAFSSSYAFLLIARS LQGIGSSCSSVAGMGMLASVYTDDEERGNVMGIALGGL AMGVLVGPPFGSVLYEFVGKTAPFLVLAALVLLDGAIQ LFVLQPSRVQPESQKGTPLTTLLKDPYILIAAGSICFA NMGIAMLEPALPIWMMETMCSRKWQLGVAFLPASISYL IGTNIFGILAHKMGRWLCALLGMIIVGVSILCIPFAKN IYGLIAPNFGVGFAIGMVDSSMMPIMGYLVDLRHVSVY GSVYAIADVAFCMGYAIGPSAGGAIAKAIGFPWLMTII GIIDILFAPLCFFLRSPPAKEEKMAILMDHNCPIKTKM YTONNIOSYPIGEDEESESD

MALSELALVRWLQESRRSRKLILFIVFLALLLDNMLLT **VVVPIIPSYLYSIKHEKNATEIQTARPVHTASISDSFQ** SIFSYYDNSTMVTGNATRDLTLHQTATQHMVTNASAVP SDCPSEDKDLLNENVOVGLLFASKATVOLITNPFIGLL TNRIGYPIPIFAGFCIMFVSTIMFAFSSSYAFLLIARS LQGIGSSCSSVAGMGMLASVYTDDEERGNVMGIALGGL AMGVLVGPPFGSVLYEFVGKTAPFLVLAALVLLDGAIQ LFVLOPSRVOPESOKGTPLTTLLKDPYILIAAGSICFA NMGIAMLEPALPIWMMETMCSRKWQLGVAFLPASISYL IGTNIFGILAHKMGRWLCALLGMIIVGVSILCIPFAKN IYGLIAPNFGVGFAIGMVDSSMMPIMGYLVDLRHVSVY GSVYAIADVAFCMGYAIGPSAGGAIAKAIGFPWLMTII GIIDILFAPLCFFLRSPPAKEEKMAILMDHNCPIKTKM **ONNIOSYPIGEDEESESD**

Only 8 unique peptides (5-25AA)

MALSELALVRWLQESRRSRKLILFIVFLALLLDNMLLT VVVPIIPSYLYSIKHEKNATEIQTARPVHTASISDSFQ SIFSYYDNSTMVTGNATRDLTLHQTATQHMVTNASAVP SDCPSEDKDLLNENVOVGLLFASKATVOLITNPFIGLL TNRIGYPIPIFAGFCIMFVSTIMFAFSSSYAFLLIARS LQGIGSSCSSVAGMGMLASVYTDDEERGNVMGIALGGL AMGVLVGPPFGSVLYEFVGKTAPFLVLAALVLLDGAIQ LFVLQPSRVQPESQKGTPLTTLLKDPYILIAAGSICFA NMGIAMLEPALPIWMMETMCSRKWQLGVAFLPASISYL IGTNIFGILAHKMGRWLCALLGMIIVGVSILCIPFAK IYGLIAPNFGVGFAIGMVDSSMMPIMGYLVDLRHVSVY GSVYAIADVAFCMGYAIGPSAGGAIAKAIGFPWLMTII GIIDILFAPLCFFLRSPPAKEEKMAILMDHNCPIKTKM YTQNNIQSYPIGEDEESESD

Only 8 unique peptides (5-25AA) Only 5 unique peptides in the accessible soluble segments

80% of the sequence of SLC18A2 is represent by **long** tryptic peptides overlapping with TM segments

Molecular Cell Biology 8th ed., Lodish and Baltimore

INTEGRAL MEMBRANE PROTEINS

- alpha helix TM domain(s) (20-25 AA) + soluble domains
- low expression
- hydrophobic/amphipathic nature
- no Arg, Lys in TM domains
- detergents interfere with digestion and/or LC-MS
- UNDER-REPRESENTED IN PROTEOMIC ANALYSES

α- helix

Helical bundle

Ectra cellular

INTEGRAL MEMBRANE PROTEINS

- Increase the enrichment!
- Get acess to the hydrophobic parts of the molecule!
 - Avoid or remove detergents!

"membrane" fraction enrichment

Standard strategy (targets intact proteins)

LOW ENRICHMENT (up to 10-15%)

variants disulfide bonds

---- Tryps N-term: UniProt TMRs: UniProt

😑 signal peptide

variants disulfide bonds

---- Tryps N-term: UniProt TMRs: UniProt

😑 signal peptide

"Divide and conquer" methods

Standard strategy (targets intact proteins)

Only the hydrophilic segments

LOW ENRICHMENT (10-15%)

Three major types of N-Glycans

Asn-Xaa-Ser/Thr

"DIVIDE AND CONQUER" METHODS

N-GLYCOCAPTURE

Capture of N-glycopeptides by immobilized **LECTINS**

(concanavalin A, WGA (wheat germ agglutinin), RCA (Ricinus communis agglutinin)

> Peptides released by PNGase F N-Glyco-FASP

Capture of N-glycopeptides using hydrazide chemistry

(immobilization on beads via hydrazone linkage)

Peptides released by PNGase F SPEG

Zielinska et al. Cell, 2010

Zhang et al. Nature Biotechnology, 2003

Classic strategy

Only the hydrophilic segments (GLYCOCAPTURE)

Only the hydrophobic segments

Classic strategy

Only the hydrophilic segments (GLYCOCAPTURE)

Identification of IMPs via enrichment of membrane-embedded segments using **hpTC method.**

Blackler AR, et al. J Proteome Res. 2008, 7(7):3028-34

hpTC method (high pH-Trypsin-CNBr)

Membrane-enriched fraction

рН 7.4

hpTC method (high **pH-T**rypsin-**C**NBr)

Disruption of vesicles

hpTC method (high **p**H-**T**rypsin-**C**NBr)

^{37 °}C trypsin

Synaptic vesicular amine transporter (Slc18a2)

Synaptic vesicular amine transporter (Slc18a2)

Synaptic vesicular amine transporter (Slc18a2)

Solubilization in organic acid followed by chemical cleavage of peptides by **CNBr** at **Met**

HpTC method High pH-Trypsin-CNBr

Membrane-enriched fraction

Disruption of vesicles

Trypsin added

Vít O. et al., *Journal of Proteomics* 2016 Blackler A et al., *J Proteome Res.* 2008

"DIVIDE AND CONQUER" METHODS

THE PITCHFORK STRATEGY

(Vit et al, J. Proteomics, 2019)

The Pitchfork strategy

Translocon-associated protein subunit beta

- 800-1700 IMPs identified in various human tissue samples
- IMPs from all compartments
- Applicable to any cellular material, fresh or frozen
- No bias toward number of TM domains
- Time consuming, high amount of starting material needed

Looking for new theranostic targets in human Pheochromocytoma and Paraganglioma

Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec

Eunice Kennedy Shriver National Institute of Child Health and Human Development

- Rare **neuro-endocrine tumors (**0.8/100,000)
- From chromaffin tissue of adrenal medulla (PHEO) or sypathetic ganglia (PGL)
- From parasympathetic ganglia (PGL)

- Rare neuro-endocrine tumors
- From chromaffin tissue of adrenal medulla (PHEO) or sypathetic ganglia (PGL)
- From parasympathetic ganglia (PGL)
- Catecholamine producing tumors (dopamine, noradrenaline, adrenaline)
- Up to 25 % are malignant, even benign disease has high mortality
- Therapy is limited for patients with metastatic disease

- Rare neuro-endocrine tumors
- From chromaffin tissue of adrenal medulla (PHEO) or sypathetic ganglia (PGL)
- From parasympathetic ganglia (PGL)
- Catecholamine producing tumors (dopamine, noradrenaline, adrenaline)
- Up to 25 % are malignant, even benign disease has high mortality
- Therapy is limited for patients with metastatic disease

NEW DRUG TARGETS ARE NEEDED

INTEGRAL MEMBRANE PROTEINS ARE EXCELENT DRUG TARGETS

Distinct molecular subtytypes of based on mutations, mRNA expression...

Cluster 1.	Pseudohypoxia (SDHx, VHL, FH, HIF2A, EGLN1)			
Cluster 2.	Kinase signaling (<i>RET, MAX, NF1, HRAS, TMEM127</i>)			
Cluster 3.	Wnt altered (UBTF-MAML3, CSDE1)			
Unassigned	Patients with no mutation in the PPGL susceptibility genes			

stitute	Patient No.	Sex	Tumor Type	PPGL Cluster	Mutated Gene
pment	1	F	PGL	1	SDHB
	2	F	PGL	1	SDHB
	3	М	PGL	1	SDHB
	4	М	PGL	1	SDHB
	5	М	PGL	1	SDHB
	6	F	PGL	1	SDHB
	7	М	PGL	1	SDHB
	8	F	PGL	1	SDHB
	9	F	PGL	1	SDHB
	10	М	PHEO	1	VHL
	11	F	PHEO	1	VHL
	12	F	PHEO	1	VHL
	13	М	PGL	1	VHL
	14	М	PGL	1	VHL
	15	F	PHEO	1	EPAS1
	16	М	PHEO	2	RET
	17	F	PHEO	2	RET
	18	М	PHEO	2	RET
	19	F	PHEO	2	RET
	20	F	PHEO	NA	Sporadic
	21	F	PHEO	NA	Sporadic
	22	М	PHEO	NA	Sporadic

Cluster 1

No mutation Cluster 2

ADRENAL MEDULLA – THE CONTROL CHROMAFFIN TISSUE

ADRENAL GLAND

A Rota Champer Logia

Filtering for cell surface localization

Vít O. et al. Clinical Proteomics, 2023

GLUTAMATE CARBOXYPEPTIDASE 2 (FOLH1)

GLUTAMATE CARBOXYPEPTIDASE 2 (FOLH1) PROSTATE-SPECIFIC MEMBRANE ANTIGEN (PSMA)

GLUTAMATE CARBOXYPEPTIDASE 2 (FOLH1) PROSTATE-SPECIFIC MEMBRANE ANTIGEN (PSMA)

OVEREXPRESSED ON PROSTATE CANCER CELLS

Anti-PSMA radio-conjugates approved for PC tumor imaging and therapy of advanced PC

PSMA EXPRESSION IN HUMAN PPGL

PSMA relative expression in PPGL

Vit,O. et al. Molecules **2021**, 26, 6567

PSMA EXPRESSION IN TUMOR VASCULATURE IN CLUSTER 1 PPGL

- A cell adhesion molecule, role in endothelial permeability
- Overexpressed in several cancers, expression correlates with progression
- Anti-CD146 antibody inhibited tumor growth in mouse xenograft models
- Tested as a drug target and imaging target for several tumors in preclinical studies

Anoctamin-1 (DOG1, TMEM16A)

- A Ca²⁺-activated Cl⁻ channel
- Overexpressed in several cancers, correlates with poor prognosis
- Function in cancer unknown
- Inhibiton reduced growth of cancer cells
- Inhibitors in preclinical studies
- NIH-approved anti-asthma drug zafirlucast is ANO-1 inhibitor

Vít O. et al. Clinical Proteomics, 2023

- Cell adhesion molecule, essential for neural development and regeneration
- Overexpressed in numerous cancers, expression correlates with disease progression
- Pro-angiogenic roles in the endothelial cells of tumor-associated vessels
- Anti-CD171 antibody decreased tumor vascularization and progression
- CAR-T cells recognizing CD171 in clinical trials for neuroblastoma

AND WHAT ABOUT THE NON-MEMBRANE PROTEINS?

SDHB-specific changes?

Trypsin-based LFQ data

SDHB vs. controls

Mitochondrial Arg metabolism

- ARG 2 overexpression in several cancers
- The expression associates with poor prognosis
- Increases the activity of complex II
- LMW inhibitors suppress growth or promotes apoptosis

Mitochondrial Arg metabolism

ARG2 inhibitor N-Hydroxy-nor-L-arginine (nor-NOHA)

Inhibitory effect on growth of control and SDHB defficient PPGL cells

Take-home message

- Up to 8000 -12000 of proteins can be identified in a human tissue sample.
- Low-abundance proteins and membrane proteins often escape detection.
- MS-based identification is identification of the coding gene.
- Absence of detection does not mean absence of the peptide/protein
- Most proteomics data are semi-quantitative
- It is just a single snapshot of a spatio-temporal process!
- Design of the study and the sample quality are critical
- The real fun starts after MS/MS analysis
- Proteomics can discover molecular processes, id. biomarkers and drug targets.
- A possible way toward precision medicine and patient-tailored therapy
- Single cell proteomics may open new opportunities....

Clinical Proteomics Group

www.petraklab.cz

Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec

