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Abstract: Similarly to other types of malignant tumours, the incidence of head and neck cancer is
increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader
sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours
observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV
infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic
capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a
significant impact on the biological properties of cancer cells. The microenvironment participates in
the control of local aggressiveness of cancer cells, their growth, and their consequent migration to
lymph nodes and distant organs during metastatic spread. In cancers originating from squamous
epithelium, a similarity was demonstrated between the cancer microenvironment and healing
wounds. In this review, we focus on the specificity of the microenvironment of head and neck
cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential
therapeutic application.

Keywords: cancer; cancer microenvironment; cancer ecosystem; cancer-associated fibroblast;
extracellular matrix; cytokine; IL-6; tumour-associated macrophages; cancer therapy

1. Epidemiology of Head and Neck Squamous Cell Cancer

The incidence of malignant diseases is increasing worldwide [1]. The cause of this dismal trend is
being extensively investigated, with an unhealthy lifestyle and environmental pollution being blamed
for a large part of it. Besides that, population ageing is associated with age-dependent and gradual
loss of capacity of the gene repair machinery. The rapid ageing of the population dependent on a high
level of widely accessible medical care (for example in western/central Europe) is accompanied by an
accumulation of age-related health disorders including cancer [2].
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Head and neck squamous cell carcinoma (HNSCC) follows these general oncological trends.
Approximately 600,000 patients worldwide suffer from HNSCC [3,4]. Tobacco smoking and alcohol
consumption are traditionally linked to this cancer type formation. More recently, human papillomaviruses
(HPV) have been proved as an important aetiological factor in some patients without the history of
alcohol and tobacco abuse [5]. Interestingly, HPV-positive tumours seem to have different epidemiologic
and clinical characteristics, and they also differ in the molecular mechanisms driving their progression.
This is reflected in the better treatment response and higher survival rates compared to the HPV-negative
tumours [6].

2. Tumour as A Complex Ecosystem Supporting Function of the Cancer Cells and Cancer
Stem Cells

Cells in multicellular organisms must closely collaborate both at the tissue and at the organism
level and thus form an analogue of an ecological ecosystem. Intimate communication between
cancer cells and non-cancerous cell populations within the tumour also resembles a complicated
ecosystem [7] (Figure 1). From this point of view, the malignant tumour can be interpreted as an
aberrant organ with specific intrinsic regulation and systemic effect on the function of the whole
organism [8]. Cancer cells interact with non-cancerous members within their ecosystem directly
(physically by cell-to-cell contacts) as well as indirectly via soluble bioactive molecules (growth factors,
cytokines and chemokines).
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Figure 1. The cancer ecosystem. This figure shows the interaction between cancer cells (black), cancer
growth-supporting cells (green) such as cancer-associated fibroblasts (CAF), T-regulatory lymphocytes
(Treg), myeloid-derived suppressors (MDS), tumour-associated macrophages (TAM) and cancer
growth-inhibiting cells (red) such as natural killer (NK) cells CD8+T lymphocytes, M1 macrophages
and dendritic cells (DC). The activity of the cells with anti-cancer effect is inhibited both by cancer
cells and by cancer-stimulating cells. At an advanced stage of the disease, the entire cancer ecosystem
controls the metabolism of the patient mainly through hepatocytes (Hep), adipocytes (Adip) and
striated muscle cells (Muscle) by production of factors such as IL-6 that induce failure of the organism
and cachexia.

A similarity between a healing wound and tumour stroma was proposed by Dvorak more
than thirty years ago [9]. Later, comparative research confirmed that cancer ecosystems of various
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tumours share similar features to the wound at different levels of description [10]. Both ecosystems,
i.e., granulation tissue of the wound and cancer stroma, contain activated fibroblasts, myofibroblasts,
that express α-smooth muscle actin (SMA) (Figure 2) and fibroblast activation protein (FAP) [10,11].
Multiple types of immune cells also frequently reside in both healing wound and tumour tissue.
Their role in cancer biology is surprisingly multifaceted and cell type-specific.
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contraction. Mechanistically, the consequent approximation of wound edges can facilitate rapid 
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Figure 2. Expression of α-smooth muscle actin (SMA) in basal cell carcinoma and CAF. The figure
demonstrates SMA-positive stroma (red) and negative control (NC). Cultured CAF from the human
basal cell carcinoma visualised by detection of α-smooth muscle actin (red signal) in the extracellular
matrix rich in fibronectin (green signal). Nuclei are counterstained by DAPI (blue signal). The bar
represents 500 and 50 µm, respectively. Specimens were prepared in the authors’ laboratory.

Among its other functions, the immune system is responsible for accurate identification and
elimination of malignant cells. However, this usually requires proper orchestration of several cell
types controlling the immune response checkpoints. Under certain circumstances, the malignant cells
are recognised by the immune cells as “self”; therefore, tolerogenic signals prevail and effectors, e.g.,
cytotoxic lymphocytes, do not eliminate malignant cells. Functions of CD8+ lymphocytes, NK cells
and M1 polarised macrophages are inhibited, while the activity of tumour-supporting immune cells
populations such as Treg lymphocytes, myeloid-derived suppressor cells and tumour-associated
macrophages is stimulated [12].

In general, the cancer microenvironment represents a potent immunosuppressive milieu that
is important for the progression of cancer itself. To revert this tolerance, increased expression of
cancer-specific antigens might be used to activate the specific anti-tumour immunity.

2.1. Cancer-Associated Fibroblasts (CAF)

In the usual context of acute wounds, myofibroblasts are responsible for the control of wound
contraction. Mechanistically, the consequent approximation of wound edges can facilitate rapid
reepithelization. Myofibroblasts are also a hallmark of cancer stroma. However, a purely mechanistic
explanation for their occurrence at this site is not straightforward. In both systems, myofibroblasts most
likely originate from the local mesenchymal cells or mesenchymal stem cells [13]. However, other cell
types, including the hypothetical source in cancer cells per se after epithelial-mesenchymal transition,
cannot be fully excluded as the source cells [14–16], assuming CAF derived from the cancer cells would
carry the same genetic alterations or HPV-16 oncogenes. In vitro experiments demonstrated that lung
epithelial cells transfected with HPV-16 genes E6 and E7 acquired the mesenchymal phenotype and
exhibited remarkable biological effects on co-cultured keratinocytes that are phenotypically similar to
cancer cells [17]. However, other experiments demonstrated that origination of CAF from cancer cells
is not too probable [14].

Concerning the mechanisms of CAF transformation from their potential precursors, growth factors
such as TGF-β1/3 and their downstream signalling targets represent widely accepted candidates [18].
These cytokines trigger a complex signalling programme leading to a specific gene transcription
profile. The TGF-β influence can be further corroborated via endogenous lectin galectin-1 [19,20].
The TGF-β signalling has been described as context-dependent, and the effect in the context of tumour
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microenvironment can be highly variable. Furthermore, fibroblasts in the vicinity of a growing
malignant cell clone are not uniform [21,22] and represent a heterogeneous pool of cells. Thus, only a
limited subpopulation of these cells would be transformed into SMA-producing myofibroblasts [23].
Monitoring their proportion can even be employed in diagnostics, as it influences the disease-free
interval and patient survival [24].

Structural and functional differences between CAF and normal fibroblasts represent a
very important topic in cancer biology, which has direct implications in clinical oncology.
Detailed knowledge of these differences would allow us to control and mitigate their pro-proliferative
properties. Available data suggest that CAF broadly differ in expression of hundreds of genes from
normal fibroblasts. Differentially regulated genes affect multiple cellular functions. Functional
enrichment analysis using the gene ontology (GO) terms indicates that, not surprisingly, the changes in
gene expression concentrate in GO terms related to extracellular matrix and developmental processes.
These differences from normal fibroblasts are apparent for CAF prepared from melanoma (Figure 3A),
squamous cell carcinoma (Figure 3B) and cutaneous basal cell carcinoma (Figure 3C).
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Figure 3. Functional enrichment of the genes differentially expressed between CAF and normal
fibroblasts. This figure shows the gene set enrichment analysis using the Gene Ontology terms, where
differences between CAF isolated from a skin metastasis of melanoma (MELF, A), squamous cell
carcinoma (SCCF, B) and basal cell carcinoma (BCCF, C), and normal dermal fibroblasts from healthy
donors (DF, A–C) are demonstrated. The figure is based on the authors’ data.

On the other hand, normal tissue fibroblasts from different body sites also broadly differ,
e.g., normal fibroblasts from oral mucosa differ from the fibroblasts prepared from the skin (Figure 4).
Clear differences between normal fibroblasts from the head and body and between fibroblasts of young
and elderly patients were also observed [25].
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Figure 4. Functional enrichment of the genes differentially expressed between mucous and dermal
fibroblasts. This figure shows the gene set enrichment analysis using the Gene Ontology terms,
showing the difference between normal mucosa fibroblasts from the oral cavity (MuF) and facial skin
(DF). The figure is based on the authors’ data.

When used as a model of the tumour microenvironment, CAF are biologically active on normal
non-cancerous epithelial cells and support cancer cells. Surprisingly, their activity is not cancer
type-specific, which suggests that CAF do not use tumour type-restricted mechanisms. For example,
CAF isolated from melanoma or basal cell carcinoma influence the phenotype and migratory activity
of cells of both breast cancer and glioblastoma [26,27]. However, the in vitro experimental setting used
in the cited studies is not fully supported by evidence based on tumour tissue sample analyses,
and therefore the results need further validation [28–30]. Recently, the epigenetic mechanisms
controlling the CAF function within the tumour niche have been identified [30,31]. From the functional
point of view, the principal interest of CAF investigation was traditionally oriented on synthesis and
turnover of extracellular matrix and production of bioactive factors.

The existence of cancer stem cells and their role was well documented in many types of malignant
tumours including HNSCC [32,33]. Their direct identification is complicated because no single specific
and robust marker has been determined so far. Their identification is therefore based on combinations
of several putative stem cell markers. This panel includes markers such as CD44, CD117 and CD133 [34].
Although stem cell identification is not easy and routinely accessible, their targeting can positively
influence the radiosensitivity of HNSCC [35]. The bona fide stem cells exhibit unique properties such as
slow proliferation rate and long label retention. Rapid transport of xenobiotics from the cytoplasm is
another typical functional feature of stem cells. This ability can improve their survival after exposure
to toxic agents, e.g., chemotherapy. This phenomenon is a base for the development of critical features
of malignancies such as multidrug resistance and long-lasting stabilisation in the stage of minimal
residual disease [36].

The proper function of stem cells including cancer stem cells is dependent on their microenvironment.
This niche is necessary for the maintenance of their stemness [37,38]. It was shown earlier that
local fibroblasts represent a key factor in normal and cancerous tissue models. In these experiments,
employment of the normal dermal fibroblasts, as well as CAF, was critical for sustainable maintenance
of the stem cell-like phenotype of a side population prepared from the HNSCC FaDu cell line [39].
CAF seem to improve the stem cell properties of a pool of HNSCC cancer stem cells via Wnt-dependent
signalling (predominantly Wnt 3a and Wnt 16) [40]. This observation indicates the importance of cancer
microenvironment in the biology and clinical properties of cancers, including their stem cell activity.

2.2. Extracellular Matrix (ECM) and Cancer

Numerous cell types including CAF produce ECM. ECM represents a fundamental structural
component of any normal or pathological tissue. Besides the structural aspects of ECM, it also confers
signalling activity, which is decoded by the surrounding cells including cancer cells. The composition
of ECM in malignant tumours influences self-sufficient cell growth, insensitivity to growth inhibitors,
unlimited replicative potential, angiogenesis and metastatic behaviour. These properties can be
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modulated directly via specific receptors such as integrins, or by formation of deposits of growth
factors or cytokines immobilised to ECM scaffolds [41]. The pattern of ECM in distinct tissues and
tumours is not static but highly dynamic. Numerous proteolytic enzymes achieve equilibrium of ECM
production and resorption with distinct specificity for different ECM components. This is e.g., essential
in the control of the mesenchymal type of cancer cell migration [42]. In addition to protein molecules,
complex carbohydrates such as proteoglycans and glycosaminoglycans are present in the ECM,
and their importance shall be mentioned [43]. The outstanding number of individual ECM molecules
relevant to cancer biology exceeds the scope of this review. However, periostin and tenascin-C should
be mentioned here, as they represent the hot topic of ECM research in cancer biology. Nevertheless,
the interpretation of the findings is frequently problematic and cancer type-specific [44–47]. Particular
attention is dedicated to endogenous lectins such as galectins and their relation to ECM and cancer
progression [48,49]. The similarity between cancer and wound healing microenvironment including
ECM expression is remarkable [37,50]. ECM significantly influences not only tumour growth, but also
migration of cancer cells and metastatic spread via production of numerous types of collagens and
noncollagenous proteins such as tenascin-C, different variants of fibronectin and proteoglycans [51,52].

2.3. Growth Factors, Cytokines and Chemokines

As summarised earlier, CAF produce numerous growth factors, cytokines and chemokines—crucial
elements of the CAF-cancer cell crosstalk [12,19,50]. As the CAF-cancer cell interaction is not cancer
type specific, the existence of some general factors that mediate the interaction may be expected. One of
the leading candidates is IL-6 [53]. Although it is generally considered to be an inflammation-initiating
molecule, its activity is much broader. IL-6 has a pleiotropic effect, it is elevated in the serum of cancer
patients, and a systemic impact of IL-6 on the patient’s organism should be expected [39,54,55]. Increased
IL-6 levels in the patients’ sera are indeed associated with dramatic changes in the metabolism of
cancer patients because it influences the metabolism of adipocytes, hepatocytes and striated muscle cells,
and eventually induces cancer cachexia and wasting [56–58]. Moreover, IL-6 crosses the blood-brain
barrier, negatively influencing the food intake and participating in depressive syndromes [59–61].
The direct effect of IL-6 on cancer cells and other elements of the cancer ecosystem is dependent on the
type of activated IL-6 receptor, which exists in membrane-bound and soluble forms. Finally, IL-6 closely
collaborates with pro-inflammatory chemokine IL-8. Both factors participate in the control of the migratory
activity of cancer cells [62–64].

Although entirely conclusive results are not yet available, this evidence suggests the
IL-6/JAK/STAT3 pathway as a potentially useful target for cancer treatment [65,66]. Perhaps a
combination of IL-6 axis blockade combined with targeting of other pathways, such as IL-8 and
CXCL-1 axes, may be beneficial [67]. Similarly, blockade of both IL-6 and PD-L1 inhibits growth
of hepatocellular carcinoma in the mouse model [68]. Genomic and bioinformatic analyses of cells
prepared from basal/squamous cell carcinoma, carcinoma of breast and melanoma demonstrated that
simultaneous targeting of IL-6, VEGF-A and MFGE-8 (lactadherin), optionally with inhibition of IL-8,
seems to be beneficial in cancer therapy [69]. This combination influences the IL-6-STAT-3 axis, tumour
vascularisation and resistance to hypoxia. It may also affect the SRC protein (Figure 5). The combination
demonstrates that simultaneous focusing on multiple therapeutic targets can minimise the risk of
compensatory bypass of a targeted pathway.
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red nodes denote proteins of IL-6/STAT-3 and IL-8 signalling, and blue nodes denote proteins associated
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2.4. Tumour-Associated Macrophages (TAMs)

TAMs represent another essential component of the cancer microenvironment. Macrophages are
recruited to the tumour site by CCL-2-4, CCL-5, -7, -8, -12, VEGF-A, PDGF, M-CSF and IL-10 [70–72].
The macrophage pool in the tissue is heterogeneous, with the model of polarisation to M1 and M2
having gained much attention in recent years. To introduce this concept briefly, M1 macrophages
collaborate with Th1 lymphocytes in the response to pathogens [73,74]. M2-polarised macrophages
are involved in the Th2 immune response, and under “normal” conditions play an important
role in the wound repair and tissue remodelling. TAMs share certain properties of both M1- and
M2-polarised macrophages.

In general, TAMs have anti-inflammatory properties that both directly and indirectly stimulate
cancer cells, tumour growth and metastatic spread. TAMs further contribute to the tumour-supporting
microenvironment, e.g., by promoting cancer vascularisation [75]. The main role in the TAM-cancer cell
crosstalk is played by production of factors such as MMPs, IL-1β, IL-10, VEGF, PDGF, TGF-β1, MFGE-8,
CCL-17, -22, arginase-I and galectin-3 [70]. Concerning potential anti-cancer therapy, emphasis is
usually oriented on reduction of the number of TAMs and their controlled repolarisation to M1
macrophages, respectively [72,76,77].

2.5. Natural Killer (NK) Cells

NK cells represent another leading effector element of the anti-tumour immune response.
However, cancer cells and their ecosystem [21] can seriously suppress the NK cell activity. Cancer cells

https://string-db.org/
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that combine low expression of antigen-presenting MHC-I molecules and high expression of PD-L1
significantly suppress the anti-cancer response by NK elements. Targeting PD1 and PD-L1 both on
NK cells and on T lymphocytes represents an excellent strategy for many sensitive tumours [76].
Combination of anti-PD-1/PD-L1 therapy with targeting other receptors such as lectin-like inhibitory
receptor NKG2A or EGFR seems to be promising for therapy of some malignancies via activation of
NK cells and T lymphocytes [78,79].

2.6. Professional Dendritic Cells and CD8+ T Lymphocytes

After processing of cancer-specific antigen, dendritic cells activate CD8+ lymphocytes.
Their function seems to be strongly influenced by the cancer microenvironment that can attenuate
the CD-8-dependent immune response to cancer and induce tumour tolerance [79]. Dendritic cells
can be prepared in vitro from blood mononuclear cells [80] and used in immunotherapy of tumours
via activation of CD8+ T lymphocytes [81]. CD8+ T lymphocytes represent the main component
of anti-cancer immunity. They are activated by dendritic cells with processed tumour-specific
antigens [82]. This mechanism is employed in anti-cancer therapy by vaccines prepared from dendritic
cells [83]. Their function is positively influenced by IL-2 [84], which has the potential for anti-cancer
therapy [85]. Furthermore, therapy combining enhanced activity of CD8+ T lymphocytes with
other approaches such as anti-PD1/PD-L1 seems to be a perspective for the treatment of resistant
tumours [86]. Concerning the target of anti-cancer immunity in HNSCC, the protein exhibiting genetic
alterations, aberrantly expressed proteins such is MAGE-A4 antigen normally expressed in testicular
cells or virus proteins were discussed [87,88].

2.7. Treg Lymphocytes

Treg (FOXP3+ CD25+CD4+) are a critical population for induction of immune tolerance. They also
have an inhibitory role in anti-cancer immunity. On the other hand, Treg lymphocytes attenuate
chronic inflammation and consequently inhibit tumour initiation related to inflammation [89].
They are strongly attracted to the tumour sites. Depletion of Treg lymphocytes in combination with
immune checkpoint inhibitors, such as an antibody against CTLA-4, represent prospective anti-cancer
therapy [90].

2.8. Myeloid-Derived Suppressor Cells (MDSC)

MDSC represent a highly heterogeneous population. These non-matured myeloid cells have
a profound immunosuppressive effect that can stimulate tumour growth. Their positive effect on
tumour vascularisation and metastatic spread has been reported [91]. Recent studies demonstrate that
neutrophil leukocytes can play a similar role in cancer ecosystems [92].

3. Exosomes as Important Messengers of the Intercellular Crosstalk in the Cancer
Microenvironment

The intercellular crosstalk between cancer cells themselves and between cancer cells and other
cell types of the cancer ecosystem is mediated by direct intercellular contacts or indirectly via paracrine
secretion of growth factors/cytokines/chemokines. Beside these classical concepts, recent studies
have demonstrated that extracellular vesicles can also carry the information necessary for the cell-cell
interaction [93]. According to their size and appearance, these vesicles can be classified into the subsets
of exosomes (30–150 nm), microvesicles (500–1000 nm) and apoptotic bodies (1000–5000 nm). Exosomes
are formed from the endocytic compartment via multivesicular bodies; microvesicles originate by
blebbing [94,95]. Exosomes have recently gained much attention in cancer biology as their surface
contains many receptors and ligands important for the interaction with cancer cells and other cells of
the cancer ecosystem. Nucleic acids (DNA, mRNA, miRNA) and numerous proteins, including growth
factors and proteases, are present in their lumen [95]. This cargo makes exosomes capable of influencing
gene expression in acceptor cells by transfer of bioactive molecules including gene delivery. Exosomes
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produced by CAF influence the viability, proliferation and epithelial to mesenchymal transition of
cancer cells [96,97]. Cancer cells also produce exosomes that facilitate transition of fibroblasts to
CAF [98]. Cells from the HNSCC ecosystem produce exosomes that suppress the activity of anti-cancer
lymphocytes and negatively influence the therapy of patients [99]. Their elimination from the patient
circulation or preparation of engineered exosomes with anti-cancer activity may have an excellent
perspective in future tumour therapy as a tool for manipulation of the cancer microenvironment [100].

4. Specificity of the HNSCC Microenvironment

The previously described data have general validity for many cancers, including HNSCC.
The concept of so-called ‘field cancerization’ indeed belongs to paradigmatic features of HNSCC.
The entire epithelial lining of the oral cavity is exposed during the lifetime to the same harmful agents.
Thus, we can expect that large areas of the mucosa, if not its entire surface, shares similar genetic
alterations. However, clinically apparent tumours arise only in specific regions [101–103]. Based on
this observation, we can hypothesise about the driving stimuli of such localised progression. It is
likely that the diversity of the microenvironment also plays a critical role in the field cancerization.
Here, the role of fibroblasts and their potential may be expected [104].

The whole ecosystem of HNSCC comprises paracrine and local signalling and mutual crosstalk of
cells in the local tumour microenvironment and distal signalling by IL-6 to other parts of the body,
e.g., fat tissue, muscles and liver [105]. Indeed, mesenchymal cells including fibroblasts interact
with epithelial cells during the developmental processes, e.g., in tooth formation in the prenatal
period. This set of developmental events represents a specific morphogenetic programme that can
be interpreted as tissue memory [106]. Of note, certain signalling cascades involved in the normal
epithelial-mesenchymal interactions during development are also activated in cancerogenesis [107].
Genomic analysis has also demonstrated the expression profile of histologically normal tissue margin
of surgical resection to be more similar to cancer than to the healthy tissue [108]. This observation
urges for further research because it can change our understanding of radicality in oncologic surgery.

Many factors produced by cancer cells as well as other elements of the ecosystem have remarkable
biological activity and influence the clinical behaviour of a tumour, as reviewed by Peltanova
and coworkers [109]. These factors can be potential targets of anti-cancer therapy. To study the
microenvironmental factors in HNSCC, CAF serve as a suitable surrogate as they exhibit a broad
spectrum of biological activity on normal keratinocytes in co-cultures. Normal primary keratinocytes
consequently acquire an activated phenotype, including markers of epithelial-mesenchymal transition
such as co-expression of vimentin and keratins and also transcription factor Snail [110,111].
CAF prepared from HNSCC differ transcriptionally from normal fibroblasts in more than 500 genes
encoding proteins such as IGF-2, IL-6, IL-8 and CXCL-1 [10,112]. These CAF produce factors important
for the maintenance of stem cell properties of HNSCC cells [14,113]. Production of these molecules by
cancer cells and the presence of receptors recognising these molecules are demonstrated in Figure 6.
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Figure 6. This figure shows HNSCC cell line FaDu from hypopharynx cancer with detected IL-6,
IL-8 and VEGF-A and their receptors. NC is a negative control. Nuclei are counterstained with
haematoxylin; the bar represents 50 µm. Immunocytochemistry performed in the authors´ laboratory.

CAF also produce large quantities of galectin-1, a very important structural and functional
component of ECM, into their microenvironment. This endogenous lectin participates in the transition
of fibroblasts to myofibroblasts [29,108]. Galectin-1 also induces apoptosis in T lymphocytes and has an
immunosuppressive effect [114]. On the other hand, galectin-1 diminishes resistance of cancer cells to
anoikis, which is a typical feature of cancer cells [115]. These observations indicate the pleiotropic effect
of galectin-1 in cancer biology. HNSCC with galectin-1-rich stroma host numerous CAF positive for
SMA. Tumour cells in the galectin-1-rich environments express genes important for tumour progression
such as SPIN1, FUSIP1, TRIM23, PTPLAD1, MAP3K2.

On the other hand, the galectin-1-rich tumour stroma was not proved as a biomarker of poor
patient survival [116,117]. Conversely, low expression of tenascin-C and fibronectin in cancer tissues
is typical in low-risk patients, namely in the early stages of the disease [118]. The role of periostin in
the stimulation of HNSCC growth and invasion was reported in HNSCC, similarly to other types of
tumours [119–121].

Similarly to other types of cancer, the HNSCC microenvironment does not markedly differ from
healing wounds [37,50], and both share a prominent role of ECM. Data about distinct molecules of
ECM as important factors of tissue fibroplastic disorders and HNSCC progression are summarised in
Table 1.

In parallel to other malignant diseases, immune cells infiltrating HNSCC represent an essential
component of the cancer microenvironment. The presence of CD8+ T lymphocytes, Treg and MDSC in
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tumour specimens or blood samples represents a possible prognostic marker for patients suffering
from HNSCC [122,123]. The immune status-based stratification of tumours can be used for further
improvement of HNSCC classification [124]. TAM stimulate HNSCC growth, are associated with poor
prognosis of patients, and their targeting could represent a potential anti-cancer tool [125].

A remarkable number of HNSCC are caused by HPV infection. Of note, the infiltration of
HPV-positive and HPV-negative tumours by immune cells differs [126]. Surprisingly, HPV-induced
tumours infiltrated with Treg show improved survival [127]. Furthermore, CD8+ T lymphocytes
from HPV-positive tumours produce IFN-γ after stimulation and also express PD-1, but not Tim-3.
These data indicate that the dual blockade of PD-1 and Tim-3 could be beneficial for HPV-positive
HNSCC patients [128].

Table 1. Examples of ECM bioactive molecules supporting growth of HNSCC.

Molecule Activity

Collagen I Cancer progression [129]

α1 Chain of collagen XI Neovascularization, metastasising [130]

Fibronectin isoforms Cancer progression [131]

Tenascin-C Cancer progression [132]

Periostin Stemness maintenance support, cancer progression [120]

Laminin B3 Cancer progression, resistance to actinotherapy [133]

Hyaluronic acid Cancer progression [134]

Therapeutic Targeting of HNSCC Microenvironment

Modulation of intercellular signalling in the tumour microenvironment can be a valid and
robust therapeutic modality. Indeed, it is well recognised that high expression of the VEGF-A factor,
which supports tumour vascularisation, is linked to poor prognosis. Combination of anti-VEGF-A
humanised monoclonal antibody (bevacizumab) with anti-EGF receptor antibody (cetuximab) can be
used for the treatment of recurrent and metastatic HNSCC [135]. Cytokines as prominent mediators of
intercellular crosstalk include, e.g., IL-2, IL-6, IL-8 and IFN-α/γ The therapeutic strategies based on
the administration of these agents or blocking antibodies were tested in clinical trials or proposed for
clinical studies [65,110]; however, with limited success, as reviewed by Schuller and coworkers [136].

The blockade of the immune checkpoints of cell death via PD-1/PD-L1 seems to be more
encouraging, similarly to therapy of other types of cancers [137]. Data regarding the results of this
therapy were comprehensively summarised by Guidi and coworkers [138]. NK cells, predominantly
highly activated ‘super-charged’ NK cells, can be expanded in vitro employing osteoclasts as feeder
cells, and their application as cell-based therapeutics can bring a new anti-cancer therapy [139].

Numerous miRNAs are severely dysregulated in cancer including HNSCC, with impact on the
intercellular crosstalk between cells of the HNSCC ecosystem. Many of them can be employed as
future therapeutic agents [140].

5. Conclusions

Similarly to other types of tumours, the microenvironment of head and neck squamous cell
carcinoma is formed by a cancer ecosystem. The impact of this ecosystem and its products on the
entire organism is shown in Figure 1 and significantly influences the biological properties of tumours
and the overall patient’s condition. Cancer-associated fibroblasts and immune cells, as well as their
products, can be targeted for therapeutic purposes. Combination of multiple therapeutic targets seems
to be beneficial.

Author Contributions: Conceptualization; data collection; manuscript preparation: K.S., J.P., M.K., L.L.;
manuscript preparation J.B., V.B., P.S., M.C., M.H.
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Plzák, J.; Chovanec, M.; et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts
by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell
2012, 104, 738–751. [CrossRef]

http://dx.doi.org/10.1016/j.smim.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29289420
http://dx.doi.org/10.1038/onc.2016.353
http://www.ncbi.nlm.nih.gov/pubmed/27669441
http://www.ncbi.nlm.nih.gov/pubmed/29221185
http://dx.doi.org/10.1182/blood-2014-12-618025
http://www.ncbi.nlm.nih.gov/pubmed/26100252
http://dx.doi.org/10.1158/1078-0432.CCR-16-2819
http://www.ncbi.nlm.nih.gov/pubmed/28400428
http://dx.doi.org/10.3390/ijms18061122
http://dx.doi.org/10.1016/S0194-5998(96)80631-0
http://dx.doi.org/10.1177/154411130301400506
http://dx.doi.org/10.1111/j.1600-0714.2012.01185.x
http://dx.doi.org/10.1016/j.nut.2016.11.008
http://dx.doi.org/10.1242/dev.137216
http://www.ncbi.nlm.nih.gov/pubmed/28143844
http://dx.doi.org/10.21873/anticanres.11565
http://www.ncbi.nlm.nih.gov/pubmed/28476793
http://dx.doi.org/10.1186/s12943-019-0983-5
http://dx.doi.org/10.1080/09553000701694343
http://dx.doi.org/10.1007/s00418-009-0661-6
http://dx.doi.org/10.1111/boc.201200018


Cancers 2019, 11, 440 18 of 19

113. Álvarez-Teijeiro, S.; García-Inclán, C.; Villaronga, M.Á.; Casado, P.; Hermida-Prado, F.; Granda-Díaz, R.;
Rodrigo, J.P.; Calvo, F.; Del-Río-Ibisate, N.; Gandarillas, A.; et al. Factors secreted by cancer-associated
fibroblasts that sustain cancer stem properties in head and neck squamous carcinoma cells as potential
therapeutic targets. Cancers (Basel) 2018, 10, 334. [CrossRef]

114. Deák, M.; Hornung, Á.; Novák, J.; Demydenko, D.; Szabó, E.; Czibula, Á.; Fajka-Boja, R.; Kriston-Pál, É.;
Monostori, É.; Kovács, L. Novel role for galectin-1 in T-cells under physiological and pathological conditions.
Immunobiology 2015, 220, 483–489. [CrossRef] [PubMed]

115. Sanchez-Ruderisch, H.; Detjen, K.M.; Welzel, M.; André, S.; Fischer, C.; Gabius, H.-J.; Rosewicz, S. Galectin-1
sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ. 2011, 18,
806–816. [CrossRef]

116. Valach, J.; Fík, Z.; Strnad, H.; Chovanec, M.; Plzák, J.; Cada, Z.; Szabo, P.; Sáchová, J.; Hroudová, M.;
Urbanová, M.; et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell
carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer 2012,
131, 2499–2508. [CrossRef]

117. Zivicova, V.; Gal, P.; Mifkova, A.; Novak, S.; Kaltner, H.; Kolar, M.; Strnad, H.; Sachova, J.; Hradilova, M.;
Chovanec, M.; et al. Detection of distinct changes in gene-expression profiles in specimens of tumors and
transition zones of tenascin-positive/-negative head and neck squamous cell carcinoma. Anticancer Res.
2018, 38, 1279–1290. [PubMed]

118. Sundquist, E.; Kauppila, J.H.; Veijola, J.; Mroueh, R.; Lehenkari, P.; Laitinen, S.; Risteli, J.; Soini, Y.;
Kosma, V.M.; Sawazaki-Calone, I.; et al. Tenascin-C and fibronectin expression divide early stage tongue
cancer into low- and high-risk groups. Br. J. Cancer. 2017, 116, 640–648. [CrossRef]

119. Kudo, Y.; Iizuka, S.; Yoshida, M.; Nguyen, P.T.; Siriwardena, S.B.; Tsunematsu, T.; Ohbayashi, M.; Ando, T.;
Hatakeyama, D.; Shibata, T.; et al. Periostin directly and indirectly promotes tumor lymphangiogenesis of
head and neck cancer. PLoS ONE 2012, 7, e4448. [CrossRef] [PubMed]

120. Qin, X.; Yan, M.; Zhang, J.; Wang, X.; Shen, Z.; Lv, Z.; Li, Z.; Wei, W.; Chen, W. TGFβ3-mediated induction of
Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci. Rep. 2016, 6, 20587.
[CrossRef]

121. Yu, B.; Wu, K.; Wang, X.; Zhang, J.; Wang, L.; Jiang, Y.; Zhu, X.; Chen, W.; Yan, M. Periostin secreted
by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein
tyrosine kinase 7. Cell Death Dis. 2018, 9, 1082. [CrossRef]

122. Boucek, J.; Mrkvan, T.; Chovanec, M.; Kuchar, M.; Betka, J.; Boucek, V.; Hladikova, M.; Betka, J.;
Eckschlager, T.; Rihova, B. Regulatory T cells and their prognostic value for patients with squamous cell
carcinoma of the head and neck. J. Cell. Mol. Med. 2010, 14, 426–433. [CrossRef]

123. Chakraborty, P.; Karmakar, T.; Arora, N.; Mukherjee, G. Immune and genomic signatures in oral (head and
neck) cancer. Heliyon 2018, 4, e00880. [CrossRef]

124. Chen, Y.-P.; Wang, Y.-Q.; Lv, J.-W.; Li, Y.-Q.; Chua, M.L.K.; Le, Q.-T.; Lee, N.; Coleva, A.D.; Seiwert, T.;
Hayes, D.N.; et al. Identification and validation of novel microenvironment-based immune molecular
subgroups of head and neck squamous cell carcinoma: Implications for immunotherapy. Ann. Oncol. 2018.
[CrossRef] [PubMed]

125. Evrard, D.; Szturz, P.; Tijeras-Raballand, A.; Astorgues-Xerri, L.; Abitbol, C.; Paradis, V.; Raymond, E.;
Albert, S.; Barry, B.; Faivre, S. Macrophages in the microenvironment of head and neck cancer: Potential
targets for cancer therapy. Oral Oncol. 2019, 88, 29–38. [CrossRef] [PubMed]
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