
ARTICLE
doi:10.1038/nature13319

Mass-spectrometry-based draft of the
human proteome
Mathias Wilhelm1,2*, Judith Schlegl2*, Hannes Hahne1*, Amin Moghaddas Gholami1*, Marcus Lieberenz2, Mikhail M. Savitski3,
Emanuel Ziegler2, Lars Butzmann2, Siegfried Gessulat2, Harald Marx1, Toby Mathieson3, Simone Lemeer1, Karsten Schnatbaum4,
Ulf Reimer4, Holger Wenschuh4, Martin Mollenhauer5, Julia Slotta-Huspenina5, Joos-Hendrik Boese2, Marcus Bantscheff3,
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Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns
and post-translational modifications, all of which carry biological information that is not accessible by genomics or tran-
scriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance,
in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from
human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-
specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger
RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of
drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also
hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus
enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.

The large-scale interrogation of biological systems by mass-spectrometry-
based proteomics provides insights into protein abundance, cell-type
and time-dependent expression patterns, post-translational modifica-
tions (PTMs) and protein–protein interactions, all of which carry bio-
logical information that is best investigated at the protein level. Perhaps
surprisingly, it is still not clear which of the 19,629 human genes annotated
in Swiss-Prot1 (20,493 in UniProt) are translated into proteins. Therefore,
major efforts are underway to identify these genes, including the Human
Proteome Project (HPP), which aims to broadly characterize the human
proteome, the Human Protein Atlas project (HPA), which seeks to gen-
erate antibodies for all human proteins, and the ProteomeXchange con-
sortium, which facilitates the gathering and sharing of proteomic data2–4.
Despite the fact that a plethora of individual human proteomic studies
exist, only a few systematic efforts to assemble and characterize human
proteomes have been reported so far5,6. In part this is because most pro-
teomic data do not reside in public repositories, proteomic data annota-
tion is often sketchy, and the data generation and processing platforms
are of varying capability, performance and maturity. Importantly, there
is also a notable challenge in making ‘big data’ (that is, large amounts of
data that are difficult or impossible to process using traditional techno-
logy and algorithms) more widely accessible to the scientific community,
because the development of scalable analysis tools is only in its infancy.

Assembly of the proteome in ProteomicsDB
Here we present a draft of the human proteome assembled using data
from 16,857 liquid chromatography tandem-mass-spectrometry (LC-
MS/MS) experiments involving human tissues, cell lines, body fluids,
as well as data from PTM studies and affinity purifications. We also pres-
ent the analysis of the assembled data, in ProteomicsDB, an in-memory
database designed for the real-time analysis of big data (https://www.
proteomicsdb.org). For this study (Fig. 1a), we combined data available
from repositories and otherwise contributed by colleagues (60% of total)

with published as well as new data from the authors’ laboratories (40%
of total; Supplementary Table 1 and Supplementary Information). To
maximize proteome coverage, we reprocessed all experiments using
MaxQuant7 and Mascot8, and the resulting 1.1-billion peptide spec-
trum matches (PSMs) were imported into ProteomicsDB. The database
(Fig. 1b) comprises a public repository, a web interface featuring several
data views and analysis tools, and an application programming inter-
face (API). At the heart of ProteomicsDB is an ‘in-memory’ computa-
tional resource commanding 2 terabytes (TB) of random access memory
(RAM) and 160 central processor units (CPUs), which enables the storage
of all data in the main memory, all of the time. This makes computational
tasks very efficient, illustrated by the capability to display and annotate
any of the approximately 71-million currently identified peptide-mass
spectra in real time (Extended Data Fig. 1). Controlling the quality of
peptide and protein identifications is important but exactly how this is
best accomplished is still debated in the community9,10. For the current
assembly of the proteome, we relied on high resolution mass-spectrometry
data to keep false identifications low. We applied a two-step filtering process,
first by controlling the false discovery rate (FDR) at 1% for PSMs generated
by each LC-MS/MS experiment using a global target-decoy approach11.
Peptide identifications then had to pass a length-dependent Mascot or
Andromeda score threshold of 5% local FDR on the total aggregated data
and we categorically rejected all peptides shorter than seven amino acids
(Extended Data Figs 1 and 2, and Supplementary Information). Com-
parison to 27 published studies shows that this scheme is in line with the
often-used 1% protein FDR criterion (Supplementary Table 1) and avoids
the unsolved issue of artificially high protein FDRs when analysing large
data sets12 (Extended Data Fig. 2 and Supplementary Information).

Proteomic annotation of the genome
At the time of writing, ProteomicsDB held protein evidence for 18,097
of the 19,629 human genes annotated in Swiss-Prot (92%) as well as
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19,376 out of 86,771 protein isoforms listed in UniProt (22%; Supplemen-
tary Table 1). Chromosomes were evenly covered with the notable excep-
tions of chromosome 21 and the Y chromosome (Fig. 2a). The former
contains many proteins with few mass-spectrometry-compatible tryptic
peptides. As 257 human proteins (not counting isoforms) do not pro-
duce any such peptides, this renders trypsin—as the most frequently
used protease in proteomics—ineffective. As a result, alternative prote-
ases or top down sequencing approaches will have a part to play in the
eventual completion of the human proteome (Extended Data Fig. 3a)13,14.
To facilitate this, ProteomicsDB provides a tool predicting the best pro-
tease or combinations thereof for any protein which can also be valu-
able when systematically mapping PTMs.

We next attempted to estimate the size of the protein-coding genome
based on UniProt protein evidence categories. ProteomicsDB currently
covers 97% of the 13,378 genes with annotated evidence on protein and
84% (of 5,531) with evidence on transcript level. The overlap with pro-
teins detected by antibodies in the HPA project is 93% (of 15,156 HPA
proteins) providing independent evidence that these genes exist as pro-
teins. Conversely, proteomic coverage of genes inferred from homology
(52% of 159), genes marked as predicted (64% of 72) or uncertain (56%
of 489), was considerably lower, suggesting that the protein-coding
human genome may be several hundred genes smaller than anticipated

previously. Still, we were able to validate the identification of 36 of the
uncertain genes (out of 44 tried)15 using reference spectra from syn-
thetic peptides (Supplementary Table 2). Among the identified uncer-
tain genes were three lincRNAs (Extended Data Fig. 3). This unexpected
result prompted us to search approximately 9-million tandem-mass-
spectrometry spectra from tissues and cell lines against 13,564 lincRNA
sequences from Ensembl and 21,487 lincRNAs and TUCPs (transcripts
of uncertain coding potential) from the Broad Institute16. This returned
430 high-quality peptides (no homology to UniProt sequences) from
404 lincRNAs and TUCPs (Supplementary Table 3). There was no appar-
ent bias in chromosomal location or biological source, and the abun-
dance distribution of translated lincRNA peptides was broadly similar
to that of peptides from ordinary proteins (Extended Data Fig. 3). To
our knowledge, this is the largest number of lincRNA and TUCP trans-
lation products with direct peptide evidence reported to date17, arguing
that translation of such transcripts is more common than anticipated
previously18–20. The biological significance of translated lincRNAs and
TUCPs is not clear at present. These may constitute proteins ‘in evolu-
tion’ representing hitherto undiscovered biology21 or arise by stochastic
chance marking such proteins as ‘biological noise’.

Core proteome and missing proteome
Aggregation of the data used for building the draft proteome shows that
proteome coverage rapidly saturates at approximately 16,000 –17,000
proteins, which is similar to transcriptome coverage obtained by RNA
sequencing (RNA-seq). Addition of human-tissue and body-fluid data
each led to small but noticeable contributions not provided by cell lines.
The same is true when adding PTM or affinity data to shotgun prote-
omic data (Extended Data Fig. 4). When comparing five of the largest
data sets in ProteomicsDB22–25, the existence of a human core proteome26

of approximately 10,000–12,000 ubiquitously expressed proteins can
be postulated, the primary function of which is the general control and
maintenance of cells (Extended Data Fig. 4 and Supplementary Table 4).
The low abundance range of the core proteome is enriched in proteins
with regulatory functions. The observed proteome saturation implies
that adding more shotgun data will not considerably increase coverage,
although it would increase confidence in individual proteins. Instead, it
is likely that the ‘missing proteome’ (Fig. 2b and Supplementary Table 4)
will have to be identified by more focused experimentation. It is also
possible that a considerable part of the missing proteome constitutes
(pseudo)genes that are no longer expressed. G-protein-coupled recep-
tors (GPCRs) are underrepresented in ProteomicsDB and the respec-
tive transcripts are also notoriously absent in RNA-seq data27. Earlier
work suggests that more than half of the 853 human GPCRs have lost
their function over the course of human evolution and may be consid-
ered obsolete28. Similarly, a large number of functionally uncategorized
proteins are annotated pseudogenes, potentially further reducing the
number of (actual) protein-coding genes. Cytokines may be underrep-
resented because of experimental issues as small, secreted proteins can
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Figure 1 | Strategy for the assembly of the human proteome. a, Experimental
workflow for the identification and quantification of proteins. b, Structure and
features of ProteomicsDB. ProteomicsDB consists of a repository part for
raw-data storage and an in-memory database designed for the storage, analysis
and visualization of proteomic data sets. Fast computation on large data sets is
backed by 160 CPUs and 2 TB of RAM.
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Figure 2 | Characterization of the
human proteome. a, Chromosomal
coverage of the 18,097 proteins
identified in this study exceeds 90%
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indicate the density of proteins in a
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b, Gene ontology analysis of the
‘missing’ proteome’ identifies
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proteomic experiments. CDS, coding
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still be difficult to obtain from the supernatants of cells, the intercellular
space of tissues or from body fluids. To fill the remaining gaps in
the human proteome, ProteomicsDB provides a facility to engage the
community by ‘adopting’ a missing protein; that is, to provide mass-
spectrometric evidence for its existence. In addition, we have synthe-
sized and identified 435 peptides for all 273 cytokines as well as 3,539
further peptides for proteins not yet well covered and have made their
tandem-mass-spectrometry spectra available in ProteomicsDB so that
any identification of such proteins in the future may be validated using
the synthetic reference standard (Supplementary Table 2).

Functional proteome-expression analysis
We have generated proteome profiles of 27 human tissues and body
fluids (human body map) complemented with publically available data
(Supplementary Tables 1 and 5) to begin to analyse human proteomes
in functional terms. To normalize the disparate data sets in Proteomics
DB, we found the intensity-based absolute-protein-quantification method
(iBAQ) to be appropriate (Extended Data Fig. 5 and Supplementary
Information)29–31. A simple common task is to compare the expression
level of a single protein across many biological sources (Fig. 3a). Although
housekeeping proteins such as GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) show high (and sometimes extreme) expression through-
out biological sources, high levels of the proto-oncogene EGFR (epider-
mal growth factor receptor) are mostly confined to cancerous tissue; for
example, breast cancer tissue. Similarly, b-catenin, a member of the Wnt
pathway, is highly expressed in colon cancer cells, where the protein
participates in the development of the malignancy. Principle compo-
nent analysis (PCA) of protein abundances in 42 proteomes shows that
protein expression in a particular tissue and its corresponding cell lines
is broadly similar and that there are more substantial differences between
tissues of different organs (Fig. 3b). This result is important for the inter-
pretation of data presented below and also contributes to the ongoing
discussion regarding the suitability of cell lines as model systems for
studying human biology. A comparative analysis of the 100 most highly
expressed proteins in each of 47 human organs and body fluids (Fig. 3c)
revealed that approximately 70% of these proteins are found in all organs
and body fluids but show expression differences of up to five orders of
magnitude (Supplementary Table 4). Interestingly, even the most highly
abundant proteins in a tissue or fluid often point to molecular processes
associated with the respective biological specialization; myofibrillar proteins,

including troponins, are abundant in the heart, proteases in the pan-
creas and neuronal proteins in cerebrospinal fluid.

Similar observations can be made when investigating proteins form-
ing functional classes such as protein kinases or transcription factors
(Fig. 4 and Supplementary Table 4). Akin to core proteomes, some of the
349 detected kinases and 557 transcription factors are broadly expressed,
but others seem to be confined to few organs where they drive more
specific processes. For example, the kinases HCK, ZAP70, LCK, JAK3,
TXK and FGR are found in a tight cluster of kinases in the spleen and
all have important roles in the biology of immune cells. This is ‘mir-
rored’ by transcription factors in the same cluster with strong ties to
immunity, including the NF-kB system (REL, PRKCH, NFKBIE) and
Toll-like receptor signalling (SIGIRR, IRF5, ARRB2, NLRC4). It is note-
worthy that many of the proteins in the spleen cluster are also highly
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Figure 3 | Global protein
expression analysis. a, Protein
expression in different tissues and
cell lines, showing that levels of
housekeeping (GAPDH), signalling
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expressed in the lung, a primary entry point for human pathogens. The
number of proteins that are exclusively or preferentially detected in a
particular organ is surprisingly small, and gene ontology analysis invariably
highlights organ-specific biology (Extended Data Fig. 6). For example,
adipocytes are rich in proteins involved in lipid storage, platelets in growth
factors, and placenta in proteins relating to hormonal regulation and
pregnancy (Supplementary Table 5). The above shows that even dispa-
rate, though high-quality proteomic data can be used to construct pro-
tein expression maps across an entire complex organism. A recent report
has shown that this is feasible in mice32 but to our knowledge, organism-
wide proteome-expression profiling has not been described in humans
before. In addition, the identification of a considerable number of pro-
teins with no ascribed function but exclusive (or high) expression in
particular organs implies a functional role. The contextual information
provided in ProteomicsDB may thus provide guidance for the eventual
identification of the biological role of these orphan proteins.

Integration and utility of proteomes
Many further uses of protein-expression profiling can be envisaged, of
which we can only outline a few here. We have compared messenger
RNA (RNA-seq)27 and protein (iBAQ, this study) expression profiles
for 12 human tissues (Extended Data Fig. 7, Supplementary Table 6
and Supplementary Information) and clear correlations are observed
in all cases but the Spearman’s rank correlation coefficients are rather
moderate and somewhat poorer than those previously reported for cell
lines. This is likely to be due to the fact that tissues generally comprise a
mixture of cell types, connective tissue and blood. Both mRNA and
protein levels vary greatly between tissues as one might expect; how-
ever, the ratio of protein and mRNA levels is remarkably conserved
between tissues for any given protein (Fig. 5a, top panel)33. It has been
shown previously31 that the translation rate constant is one dominant
factor determining protein abundance in cell lines. Using the ratio of
protein to mRNA levels as a proxy for translation rates, our data show
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Figure 5 | Integration and utility of large proteomic data collections.
a, Analysis of mRNA and protein levels across 12 organs shows that the
protein/mRNA ratio is largely conserved (top panel). The median translation
rates of all transcripts across all tissues correlate well with protein abundance
(bottom-left panel), leading to the ability to predict individual protein levels
from the respective mRNA levels (bottom-right panel). b, Elastic net analysis
for the identification of drug sensitivity (positive-effect-size) or resistance
(negative-effect-size) markers against the EGFR kinase inhibitors erlotinib and
lapatinib in cancer cell lines. c, Analysis of the composition and stoichiometry
of the proteasome. Top-left panel, schematic structure of the ‘constitutive’
proteasome and the ‘immunoproteasome’ (marked by the suffix ‘i’). Middle-left
and bottom-left panels, stoichiometry derived by iBAQ of the constitutive
proteasome (grey) and the immunoproteasome (red) in the salivary gland and
the lymph node. Top-right panel, expression analysis of the b1 subunit across
more than 100 tissue and cell-line proteomes reveals that many cells express

both forms of the proteasome. Bottom-right panel, expression correlation
analysis of all b subunits across the said tissues and cell lines showing strong
co-expression of the b1i, b2i andb5i subunits as well as all other b-subunits but
no correlation with the expression of the corresponding b1,b2 andb5 subunits.
d, ProteomicsDB enables the computation of molecular interferences in
selected reaction-monitoring experiments (SRM) from experimental data.
The transition of the target peptide LHYGLPVVVK (y8 fragment ion,
b-catenin) is marked with an arrow. All other circles in the plot are interfering
SRM transitions of other peptides found in ProteomicsDB that fall within the
same mass tolerance of the experiment (here, 0.7 Da). The size of each circle
indicates the severity of the interference. The inset shows that interference can
be substantially reduced by the use of high-resolution fragment-ion data
(here, 0.04 Da) and confining the analysis to the tissue from which a sample is
derived (here, a colon sample).
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that this is also true for human tissues and that the ratio is similar in
every tissue (Fig. 5a, bottom left panel). It therefore appears that the
translation rate is a fundamental, encoded (constant) characteristic of
a transcript, suggesting that the actual amount of protein in a given cell
is primarily controlled by regulating mRNA levels. Having learned the
protein/mRNA ratio for every protein and transcript, it now becomes
possible to predict protein abundance in any given tissue with good accu-
racy from the measured mRNA abundance (Fig. 5a, bottom right panel,
and Extended Data Fig. 7).

We have shown previously that protein expression can be corre-
lated to drug sensitivity24. Here we used drug-sensitivity data provided
by the cancer cell line encyclopedia34 (CCLE) to discover sensitivity and
resistance markers for 24 drugs in 35 human cancer cell lines (Supplemen-
tary Table 7). For the EGFR kinase inhibitors erlotinib and lapatinib
the primary target (EGFR) as well as annexin A1 (ANXA1, a direct EGFR
substrate), and EGFR interacting proteins at stress fibres (PDLIM, KRT5,
KRT14) all indicate drug sensitivity, whereas high expression of ANXA6
or S100A4 renders cells less responsive (Fig. 5b and Extended Data Fig. 8).
Assuringly, knockdown of ANXA6 in BT549 cells has been shown to
sensitize cells to lapatinib35 and addition of S100A4 to cells in culture
has been shown to stimulate EGFR and to promote metastasis36. High
expression of S100 proteins is often associated with resistance against
kinase inhibitors (Supplementary Table 7), suggesting that this may con-
stitute a general molecular resistance mechanism. Similar effects can be
postulated for other proteins (Supplementary Notes) and in light of a
recent report showing increased phosphorylation of HECTD1 on EGF
treatment37, it is tempting to speculate that a HECTD1–CDRT1 E3 ubi-
quitin ligase–orphan F-box protein complex may be involved in regu-
lating the stability of EGFR via the ubiquitin–proteasome system.

The composition and stoichiometry of protein complexes is typi-
cally analysed by affinity purification coupled to mass-spectrometry-
based protein analysis and it emerges that protein expression profiling
may also have potential for this purpose38. We found that stoichiome-
tries measured by iBAQ for the nuclear pore complex agreed well with
a prior study using absolute protein quantification by spiked peptide
standards (Extended Data Fig. 9 and Supplementary Table 8)39. Using
the proteasome as an example, we explored its composition and stoichi-
ometry heterogeneity across cell lines and tissues (Fig. 5c). The consti-
tutive core proteasome consists of 2 3 7 non-catalytic a- and 2 3 7
catalyticb-subunits but, for example, an ‘immunoproteasome’ has been
identified in which theb1, 2 and 5 subunits are replaced by homologous
proteins (b1i,b2i andb5i) in immune cells40,41. Our analysis shows that
the proteasome in the salivary gland is primarily of the constitutive
type and that lymph nodes almost exclusively contain the immunopro-
teasome (Fig. 5c, left panel). The same analysis across more than 100
cell-line and tissue samples (Fig. 5c, right panel) reveals that the immu-
noproteasome is surprisingly widely expressed, including in tissues for
which no primary immunological function would be expected. In addi-
tion, the data imply that the molecular composition and stoichiometry
of proteasomes is heterogeneous and cell-type-dependent. Correlation
analysis of the expression of all b-subunits (Fig. 5c, bottom right panel)
strongly suggests that theb1, 2 and 5 subunits and their respective immu-
noproteasome counterparts are expressed independently (no correla-
tion). In contrast, it seems that the remaining subunits (b3, 4, 6, 7) are
co-expressed with either group.

Proteomic data collections can be valuable data mines for post-
translational modification analysis or developing proteome technology.
ProteomicsDB currently contains 81,721 unique phosphorylated pep-
tides representing 11,025 human genes, demonstrating that more than
half of all human proteins are substrates of kinases. Similarly, there are
29,031 unique ubiquitinylated peptides from 5,769 proteins represent-
ing substrates of ubiquitin ligases as well as 16,693 acetylated peptides
from 7,098 proteins that are substrates of acetylases. Our analysis also
detected amino-terminal peptides for 7,977 proteins and carboxy-terminal
peptides for 6,778 proteins confirming a large number of translation
start and stop sites (Extended Data Fig. 10a). We expect that the PTM

branch of ProteomicsDB will grow rapidly over time and help to build
a future version of the human proteome that provides more direct links
between protein expression and activity.

So-called ‘proteotypic’ peptides42 have proven useful as quantifica-
tion standards in targeted proteomic measurements, which are increas-
ingly employed to develop clinical biomarker assays43. ProteomicsDB
enabled us to determine the proteotypicity of ,approximately 500,000
peptides and to expand the concept to chemically labelled peptides
(Extended Data Fig. 10b, Supplementary Table 9 and Supplementary
Information). The 71-million peptide-precursor and 18-billion peptide-
fragment ion measurements enables the computational assessment of
the specificity of targeted measurements ahead of the actual experiment.
Exemplified by the peptide LHYGLPVVVK of the proto-oncogene b-
catenin (Fig. 5d and Extended Data Fig. 10c), mining of ProteomicsDB
revealed a large number of potentially interfering peptides that may
distort the quantification of the target peptide. Interference can be sub-
stantially reduced by high-resolution instruments44 and by limiting the
allowed interferences to the tissue in question (Fig. 5d, inset). We anti-
cipate that the combination of experimental proteotypicity, interfer-
ence estimation and high-resolution instrumentation will provide for
more robust targeted proteomic assays in the future.

Discussion
Here we have shown that an extensive draft of the human proteome
can be assembled from disparate but high-quality proteomic data. We
have outlined some of the many applications that can be envisaged for
its use and some of the biological insights that may be generated by
mining the proteome. Similar to the evolution of the human genome
projects, the eventual completion of the human proteome will take
further time and effort but will also lead to substantial improvements
in technology, which are still needed. One issue to address is proteome
coverage and resolution. While DNA and RNA sequencing technologies
have attained single-nucleotide resolution, the amino-acid coverage of
proteins is still limited, which currently impairs our ability to detect
protein variants, such as differential splice products, PTMs, mutations
or isoforms in a systematic fashion. A related challenge is to improve
the ability to sample a proteome comprehensively; that is, ‘all proteins,
all the time’. Another important area of future research concerns over-
coming the uncertainties associated with peptide and protein identi-
fication by sequence-database searching45. ProteomicsDB and similar
resources have a part to play in these challenges as the data assembled
will enable the development of computational tools and laboratory
reagents facilitating proteome-wide discovery experiments, multiplexed
quantitative protein assays, as well as general exploration of the human
proteome.

METHODS SUMMARY
Proteomic data were downloaded from public repositories, contributed by indi-
vidual laboratories and specifically generated for this study by the authors’ labo-
ratories. For the specifically generated data, human tissue specimens were obtained
from the Biobank of the Technische Universität München following approval of
the study by the local ethics committee. Samples were collected within the first 30 min
after resection, macroscopically resected by an experienced pathologist, snap frozen
and stored in liquid nitrogen until use. Body fluids requiring no invasive procedures
were provided by volunteers. Proteins were extracted under denaturing conditions
and either separated by LDS-PAGE followed by in-gel protease digestion or digested
in solution in the presence of chaotropic agents. Synthetic peptides were produced
by solid-phase chemistry following the standard Fmoc strategy and used without
purification. Peptides were separated by ultra-high-pressure liquid chromatography
and analysed on Orbitrap mass spectrometers using either resonance-type or beam-
type collision-induced dissociation. For peptide identification, tandem mass spectra
were processed in parallel using Mascot Distiller and MaxQuant with Andromeda7,
and searched against UniProt and/or a custom build fasta-formatted sequence file
containing lincRNA sequences. Search results and tandem mass spectra were imported
into ProteomicsDB (https://www.proteomicsdb.org) and filtered at 1% PSM FDR
and 5% local peptide-length-dependent FDR. For bioinformatic analysis, data were
extracted from ProteomicsDB using HANA Studio and further processed using
custom python scripts and statistics programme R. Gene ontology analysis was
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performed using David (http://david.abcc.ncifcrf.gov) and REViGO (http://revigo.
irb.hr/). See Supplementary Information for details.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Extended Data Figure 1 | Peptide and protein identifications. a, Spectrum
viewer enabling access to more than 70-million annotated tandem mass spectra
of endogenous peptides and synthetic reference standards in real time.
b, Peptide length and score distribution for targets and decoys for the search
engine Mascot. It is of note that the peptide- and protein-identification criteria
followed a two-step process. First, for each LC-MS/MS run, we applied a global

1% target-decoy false discovery rate (FDR) cut on the level of peptide spectrum
matches (PSMs, not shown); second, we applied a peptide-length-dependent
local FDR cut of 5% for all PSMs and the results are depicted here. c, Same as in
a but for the search engine Andromeda. d, e, Heat maps showing FDRs as a
function of search engine score and peptide length. Solid lines indicate the 5%
local FDR.
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Extended Data Figure 2 | Protein-identification quality in very large data
sets. a, First filtering step. The first step filters every LC-MS/MS run at 1% PSM
FDR. Top panel, score distribution for target and decoy PSMs following 1%
PSM FDR filtering for Maxquant identifications. Bottom panel, the binned
peptide-length distribution for target PSMs. b, Same as a but for Mascot
identifications. c, Second filtering step. Same as a, but this time applying an
additional 5% local length- and score-dependent FDR on the total aggregated
data for Maxquant identifications in ProteomicsDB. It is apparent that the
second filtering step improves the FDR about threefold and removes most
PSMs shorter than 9 amino acids. d, Same as c but for Mascot identifications in
ProteomicsDB. e, Comparative analysis of protein FDR characteristics of two

different approaches based on Mascot analysis. In the classical target-decoy
approach, aggregation of large quantities of data leads to accumulation of large
numbers of decoy proteins and a concomitant loss of true target proteins when
filtering the data at 1% protein FDR. The alternative ‘picked’ target-decoy
method does not suffer from this scaling problem and maintains a constant
decoy rate (and therefore lower protein FDR) but at the expense of lower
sensitivity of target protein detection compared to the classical target-decoy
approach. Please refer to the Supplementary Information for details and a
discussion on the topic. Note that the two protein FDR methods were not used
in this manuscript. Instead, we used the criteria shown in a and b.

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 3 | Further characterization of the proteome. a, Some
proteins are refractory to identification using tryptic digestion because they
do not generate sufficient—or any—peptides that are within the productive
mass range of a mass spectrometer typically used for bottom-up proteomics.
This can be improved by the use of alternative proteases; for example,
chymotrypsin as shown here for one of the many keratin-associated proteins

localized on chromosome 21 (detected chymotryptic peptides in red).
b, c, Translation of lincRNAs is rare but does exist and can be identified
(b) across all chromosomes as well as (c) in many tissues and in HeLa cells.
d, Peptide-intensity distribution of protein-coding genes and non-coding
transcripts. Interestingly, the abundance of translated lincRNAs is broadly
similar to that of classical proteins.
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Extended Data Figure 4 | Further characterization of the proteome.
a, Proteome coverage rapidly saturates with the addition of shotgun proteomic
data. Tissue proteomes saturate at ,approximately 16,000 proteins, but both
body fluids and cell lines add small but noticeable numbers of proteins not
covered in the tissues (see also b and c for a different ordering of samples).
This indicates that proteome coverage is likely not to increase much more by
merely adding high-throughput data (although it may increase confidence in
protein identifications and will probably also increase sequence coverage).
b, Same plot as a but different ordering of samples. c, Saturation plots showing
that PTMs and affinity purifications each contribute distinctly to the coverage
of the proteome. d, Comparison of five large-scale projects suggesting that a

‘core proteome’ of 10,000–12,000 ubiquitously expressed proteins exists.
Ellipses represent the corresponding publications. e, Abundance distribution of
the ‘core proteome’ based on the normalized iBAQ method. The most highly
expressed 10% of proteins are dominated by proteins relating to energy
production and protein synthesis. The least abundant 10% of proteins are
enriched in proteins with regulatory functions. f, Tree-view summary of Gene
Ontology (GO) term analysis for the proteins constituting the ‘core proteome’,
showing that the core proteome is mainly concerned with biological processes
relating to the homeostasis and life cycle of cells. The colours represent the
broader categories of the treemap.
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Extended Data Figure 5 | Comparative analysis of five intensity-based
label-free absolute-quantification approaches. a, Linearity of intensity
(U2-OS cell line data from ref. 22) and copies per cell for absolute protein
quantification (AQUA)-quantified proteins (red dots, red regression line; same
cell line30) and derived copy-number estimates (grey dots, blue regression
line; from the same study). b, Total sum normalization re-scales intensity
distributions of Colo-205 cell digests measured on two different mass
spectrometers (Orbitrap Elite data in red, LTQ Orbitrap XL data in blue24).
c, Quantile-quantile (Q-Q) plots of the normalized data presented in
b illustrating good alignment of data across 4.5 orders of magnitude.
d, Empirical cumulative density function (ECDF) of error distributions derived
from a showing that all five methods have merit. e, Comparison of the fold
error of iBAQ and top3 as a function of the number of quantified peptides.
f, Same as e but for protein length. When peptide numbers are low, iBAQ shows
errors that are slightly smaller in magnitude compared to the top3 method.

g, Comparison of iBAQ and total sum normalized iBAQ for heavy SILAC-
labelled MCF-7 cell digests (red bars32 and label-free quantified MCF-7cell
digests (same as MCF-7 deep proteome in a; blue bars) before (left panel) and
after normalization (right panel) showing no influence of the presence of the
SILAC label on quantification results. h, Comparison of iBAQ and total sum
normalized iBAQ for iTRAQ reporter-ion-intensity-based quantification
(red bars; MCF-7 cell digest46) and label-free quantified MCF-7 cell digests
(blue bars; same as a and c) before (left panel) and after normalization
(right panel). The intensity-distribution characteristics of iTRAQ and label-free
measurements are too different to allow for comparative analyses of MS1- and
MS2-based quantification data. i, Normalized iBAQ distributions of 347
cell-line and tissue proteomes (all MS1 quantified) available in ProteomicsDB
showing the general applicability of MS1-based quantification across many
sources of biological material.
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Extended Data Figure 6 | Functional protein-expression analysis. Gene
ontology analysis of proteins with expression levels 10-fold above average in a

particular organ or body fluid invariably highlights protein signatures with
direct organ-related functional significance.
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Extended Data Figure 7 | Protein- versus mRNA-expression analysis.
a, Comparison of mRNA and protein expression of 12 human tissues showing
the general rather poor correlation of protein and mRNA levels, implying
the widespread application of transcriptional, translational and post-
translational control mechanisms of protein-abundance regulation. Spearman
correlation coefficients vary from 0.41 (thyroid gland) to 0.55 (kidney). ‘Corner
proteins’ (0.5 logs to either side of zero) are marked in colours. b, Clustering
of mRNA expression (left triangle) and protein expression (right triangle)
across the 12 tissues does not reveal tissues with common profiles suggesting

that the transcriptomes and proteomes of human tissues are quite different
from each other. c, The ratio of protein and mRNA level for a protein is
approximately constant across many tissues. The heat map shows proteins
and tissues clustered according to their protein/mRNA ratio. d, Protein
abundance can be predicted from mRNA levels. Using the median ratio of
protein/mRNA across 12 tissues, it is possible to predict protein levels from
mRNA levels for every tissue with a good correlation coefficient, underscoring
the importance of the translation rate (and mRNA levels) on protein
expression.
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Extended Data Figure 8 | Protein markers for drug sensitivity and
resistance. a, Elastic net analysis of protein expression and drug sensitivity for
the EGFR kinase inhibitor erlotinib. Positive-effect-size values indicate that
high protein expression is associated with drug sensitivity. Negative-effect-size
values indicate that high protein expression is associated with drug resistance.
b, Same as in a but for the EGFR kinase inhibitor lapatinib. c, Correlation
analysis of the elastic net effect sizes for erlotinib and lapatinib (proteins with

elastic net frequencies of less than 600 are not shown for clarity). Proteins in the
top-right quadrant are common markers for drug sensitivity (including EGFR
as the primary target of both drugs). Proteins in the bottom-left quadrant
are common markers for drug resistance (including S100A4, a known
resistance marker for lapatinib). Proteins that are strong markers for sensitivity
or resistance are annotated in each plot and most proteins can be easily placed
into EGFR signalling and regulation pathways.
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Extended Data Figure 9 | Protein complex composition and stoichiometry
from shotgun proteomic data. a, Stoichiometry of the nuclear pore complex
(NPC) reconstructed from shotgun proteomics data. To illustrate that
normalized iBAQ values from shotgun experiments actually reflect protein
copy numbers, we reconstructed the stoichiometry of the NPC (blue bars, data
from nuclear extracts of HeLa cells39; error bars indicate standard deviation
from triplicate experiments) and compared it to the stoichiometry determined
in the same study using AQUA peptides and SRM experiments (red bars).
Note that most of the time, the stoichiometries are in very good agreement
between the methods and the stoichiometries reported in the literature.
b, Stoichiometry of the a- and b-subunits of the proteasome reconstructed

from shotgun proteomics data (examples). b-subunits of the constitutive
proteasome are indicated in grey, immunoproteasome subunits (b1i, b2i, b5i)
are indicated in red. Note that PC-3 cells are devoid of the immunoproteasome,
whereas cells in the lymph node almost exclusively express this version of
the molecular machine. c, Systematic assessment of the fraction of bi subunits
(red bars) and b-subunits (grey bars) across 29 tissue samples and 80 cell-line
samples (tissue data from human body map (this study), cell-line data
from22,24). Note that many cell lines and tissues contain both versions of the
proteasome and the data also suggest that further forms of the proteasome with
different subunit compositions may exist.
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Extended Data Figure 10 | Examples for the analytical utility of large mass-
spectrometry-based data collected in ProteomicsDB. a, Enumeration of
post-translational modifications and protein termini. b, Computation of
proteotypic peptides. Generally the same one to five peptides are identified
every time a protein is identified (top panel) making proteotypic peptides
useful for assessing protein identification and as reagents for targeted
mass-spectrometry measurements. We note that the proteotypicity of a peptide
strongly depends on the presence or absence of a chemical modification
(bottom panel, here tandem mass tags (TMT) or isobaric tags for relative and
absolute quantification (iTRAQ)). c, Analysis of the selectivity of SRM
transitions. The top panel shows the y8 transition of the peptide

LHYGLPVVVK (b-catenin, marked with an arrow) in a slice of the precursor
and fragment-ion window of 0.7 Da and 0.7 Da, respectively, typically
employed on triple-quadrupole mass spectrometers. The size of the circle
represents the relative intensity of the y8 fragment in a full tandem mass
spectrum of this peptide. All other circles are interfering peptides (extracted
from the entire ProteomicsDB) that have precursor and fragment ions in the
same m/z window and with varying intensities (circle size). Interference can be
reduced by using high-resolution mass spectrometry (middle panel) and
confining the analysis to the tissue in question (here, a colon sample, bottom
panel). Such interference plots in conjunction with the proteotypicity of
peptides can be valuable for the design of targeted proteomic experiments.
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