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ABSTRACT: The vocabulary of theoretical statistics can be difficult to embrace from
the viewpoint of computational proteomics research, even though the notions it
conveys are essential to publication guidelines. For example, “adjusted p-values”, “q-
values”, and “false discovery rates” are essentially similar concepts, whereas “false
discovery rate” and “false discovery proportion” must not be confused, even though
“rate” and “proportion” are related in everyday language. In the interdisciplinary
context of proteomics, such subtleties may cause misunderstandings. This article aims
to provide an easy-to-understand explanation of these four notions (and a few other
related ones). Their statistical foundations are dealt with from a perspective that
largely relies on intuition, addressing mainly protein quantification but also, to some
extent, peptide identification. In addition, a clear distinction is made between concepts
that define an individual property (i.e., related to a peptide or a protein) and those
that define a set property (i.e., related to a list of peptides or proteins).
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1. INTRODUCTION
For a number of years, the proteomics community has been
concerned with quality control (QC - see list of abbreviations,
Table 1) methods that allow it to provide the most reliable

biological conclusions possible on the results it produces. In
discovery proteomics, where large-scale approaches are now
standard, the vast mass of data that is produced daily is difficult
to reconcile with an expert-driven, refined, manual analysis. In
this context, the role of QC has spread along the entire chain of
interdisciplinary expertise, making statistics necessary in places
where it was originally not expected. Recently, three
publications related to false discovery rate (FDR) illustrated
that a better understanding of statistical QC would be beneficial
to the proteomics community:
• Serang et al.1 explained that the vigorous debates around

QC and data analysis when producing the first drafts of the
human proteomes2,3 probably originated from confusion
between at least two FDR-related notions.
• We argued4 that one of the methods most commonly used

to compute FDRs in Perseus5 may rely on a distortion of p-
values that has already been described in the microarray
literature;6 we also explain why these possibly incorrect p-values
may nevertheless be compatible with biologically relevant

results, in contradiction with what is generally expected of QC
tools.
• The Human Proteome Project consortium7 proposed

stringent guidelines to ensure that, in all publications linked to
the project, thorough descriptions of how FDRs were calculated
are presented alongside protein lists. Moreover, some addi-
tional validation criteria are required for any claim made about
a specific protein.
These publications advocate for a better understanding and

more discussions of FDR and related statistical notions.
However, statistical vocabulary can be obscure and may cause
confusion, which severely hinders these discussions. In fact,
statistics is so deeply rooted in mathematics that it remains
disconnected from most of its fields of application, ranging
from proteomics to social sciences, where similar discussions
are regularly published.8,9

This tutorial is intended for use by computational engineers
who work somewhere in the middle of the chain of expertise
required for proteomics research and who represent an
increasing proportion of this chain. The aim is to provide
them with an easy-to-understand overview of the following
notions: p-value, q-value, adjusted p-value, FDR, local-FDR, and
false discovery proportion (FDP). Proteomics counterparts to
some of these notions were introduced a long time ago, when it
first became necessary to estimate the number of peptide
spectra that were incorrectly identified. However, their
connections to the theoretical foundations of statistics were
(and remain) not trivial. More recently, these statistical notions
also explicitly showed up in the quantification setting when
attempting to determine which proteins are significantly
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Table 1. List of Abbreviations Used in This Article

acronyms meaning

QC quality control
FDP false discovery proportion
FDR false discovery rate
PSM peptide-spectrum match
PEP posterior error probability
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differentially abundant between at least two biological
conditions. Because the objective of this article is to relate
these notions to the proteomics context, while also helping
computational proteomics experts to connect to mainstream
data analysis methods, the structure of the article has been
reversed with regards to history: First, the quantification setting
where the statistical notions are straightforwardly involved is
presented. Afterward, we go back to the well-described peptide
identification setting to unravel its statistical foundations.

2. THE p-VALUE: AN ANSWER TO A QUESTION THAT
WAS NEVER ASKED

Let us consider a relative quantification proteomics experiment
where the abundances of thousands of proteins are compared
between several replicates split between two biological
conditions (e.g., mutant vs wild type). We will call (see Figure
1):

• Putative discovery: any protein quantified in the experi-
ment
• True discovery: a protein that is differentially abundant

between the biological conditions (generally, these proteins are
sought for their potential biological interest)
• False discovery: a protein that is not differentially abundant

between the biological conditions (generally, these proteins
lack biological interest in the context of this experiment)
• Selected discovery: a protein that has passed some user-

defined statistical threshold (generally this protein is expected
to be biologically relevant; however, no one knows whether it
is).
Alternatively, true/false-negative/positive taxonomy can be

used. However, as already discussed,10−12 false-positive rate and
false discovery rate are different concepts that should not be
confused. Because the former is not discussed in this article, it
was decided to use the vocabulary creating least confusion.
Logically, any experimental practitioner would expect a

statistical procedure to inform on whether each putative
discovery can be classed as true or false. In this idealized case,
the set of true discoveries and selected discoveries would
concur. Unfortunately, because no procedure exists to produce
such a binary classification in a completely reliable way,
practitioners of many disciplines learned long ago to accept a
probabilistic result and to select a set of discoveries based on a
manually defined threshold on the range of probability values.
When using this approach, the question naturally arises, “What
is the probability that a putative discovery is false?” As an
answer to this question, statistical procedures would be
expected to provide a small probability value to indicate a
true discovery and a high one to indicate a false discovery. In

practice, statisticians compute the significance of a given
protein’s differential abundance using a statistical test, which
returns a so-called p-value that behaves exactly as mentioned:
small for differentially abundant proteins, large for the others.
Because of this concordance, the p-value of one’s favorite
statistical test could be understood to correspond to the
probability that a quantified protein is not differentially
abundant. Unfortunately, this is not the case.13

To understand why, we will use a simpler interpretation of
probabilities. Although the p-value is an “individual property”,
related to a given protein, it is more intuitive to understand a
probability value (in general, not necessarily a p-value) as a “set
property”, and, more precisely, as a proportion. In general
terms, the probability that a random experiment will succeed
can be expressed as the proportion of success among trials. This
intuitive interpretation can be extended to our case. Concretely,
“the probability that a putative discovery is false” can be viewed
as the proportion of false discoveries among the set of similar
putative discoveries

π#
#

={false discoveries}
{putative discoveries}

: 0
(1)

and which will be referred to as π0 from now on. This
proportion should be low if the putative discoveries considered
are true discoveries and high otherwise. Now, let us compare
this proportion to the one reflected by p-values, which reads

# ∩
#

{{false discoveries} {selected discoveries}}
{false discoveries} (2)

Obviously, eqs 1 and 2 differ, and it becomes clear that p-values
are not meant to quantify the “probability that a putative
discovery is false”. In fact, a p-value is an answer to another
question entirely, “What is the probability that a given false
discovery is included in the set of selected discoveries?”
In practical terms, this question is more complicated to

understand, and its answer is less interesting. However, this is
the answer provided by statistical tests because it is much
simpler to compute. This can be explained as follows: Most of
the time, the amount of data available is insufficient to precisely
estimate π0 for any possible type of putative discovery. As we
will see later, it is often possible to provide rough estimates of
this ratio, at least when one considers all of the putative
discoveries together. However, this π0 “averaged on the entire
dataset” is not accurate enough to allow selection, or not, of
each individual putative discovery. This is why, instead of
providing a relatively unreliable answer based on a rough
estimate, statisticians propose to use a procedure (namely, the
statistical test) that provides an answer (the p-value) to a
different question. The question answered is more difficult to
relate to the original problem, but its answer is more robust.

3. STATISTICAL TESTS: WHY HAVING “ENOUGH
DATA” IS NECESSARY

Statistical tests are based on the idea that false discoveries are
extremely frequent, unlike true discoveries, which are scarce. In
other words, a true discovery amounts to a notable fact,
whereas a false discovery is a standard observation. Thus if
“enough data” are available (i.e., a large enough number of
proteins to test), then statisticians can define a “standard” based
on false discoveries (which, in statistical jargon, is termed the
null hypothesis) and characterize its statistical behavior (by
means of a distribution termed the null distribution). However,

Figure 1. Venn diagram illustrating the different notions presented in
Section 2.
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it is unlikely that the number of true discoveries will be
sufficient to precisely characterize their statistical behavior (by
means of another distribution).
Thus the duty of statisticians is to determine whether a

putative discovery is true or false by relying only on the null
distribution. To achieve this, the hypothesis testing framework
classically proposes to quantify the similarity between the
putative discovery and the null distribution by means of a
metric called test statistic. Concretely, for any given quantified
protein, the expected “standard behavior” is that of non-
differential abundance (or at least, that the difference in
abundance can largely be explained by random fluctuations).
According to the theory, the similarity between a protein
(depicted by a vector of abundances grouped in two sets of
replicates) and the null distribution should be measured using
any statistic from the Student family. Because Student’s
statistics are difficult to interpret, they are replaced by p-values,
with the following interpretation: For a given protein X, a p-
value of 1% indicates that only 1% of the false discoveries will
be less similar to the “standard behavior of false discovery” than
protein X, which can be directly related to eq 2.
The development of the traditional hypothesis testing

framework is previous to the advent of big data. As explained
in the next section, it is now possible to leverage the big data
context to better characterize the mixture of true and false
discoveries.

4. THE FDP: WHY HAVING “BIG DATA” IS
IMPORTANT

Let us now assume that more data are available than in Section
3 (even if the corresponding number of proteins is not yet
precisely defined). Our intuition tells us that with the number
of observed true discoveries being mechanically greater, it
should become possible to build some meaningful statistics on
the true discoveries. Although fully specifying their distribution
is most of the time not possible (as one does not know which
putative discoveries are true or false), this intuition is
nonetheless essentially correct: Notably, we will see that it is
at least possible to provide a rough estimate for π0 (eq 1).
Then, on its basis, it becomes possible to estimate another
quantity

# ∩
#

={{false discoveries} {selected discoveries}}
{selected discoveries}

: FDP

(3)

Although this equation still does not answer the original
question (for each protein, what is the probability that it is a
false discovery?), it nevertheless gives an interesting hint, as it
answers a related question: Among all the selected proteins,
how many are false discoveries? In fact, this approach is simply
a shift from a question that relates to an individual protein (the
probability that it is a false discovery) to a question that relates
to the entire set of proteins (the proportion of false discoveries
it contains). This shift from “individual property” to “set
property” makes it possible to answer the question, and the
resulting quantity is referred to as the false discovery proportion
(or FDP). At this point, it should be noted that the FDP is
often called the FDR in proteomics. However, as we will see
below, this is an oversimplification because an FDR does not
exactly coincide with the FDP.
First, we have to grasp why it is possible to estimate this

FDP. In fact, even if characterizing the behavior of the putative
discoveries themselves is a problem (so far, a manageable one

for false discoveries and an insoluble one for true discoveries),
statisticians have a very precise idea of how their resulting p-
values behave:
• The p-values for true discoveries are relatively simply

characterized: They are small; instead of being spread across
the [0,1] interval, they are concentrated in a small region close
to 0, as depicted on the histogram shown in Figure 2a,
illustrating a simulated data set where all of the proteins are
truly differentially abundant.

• The p-values for false discoveries, in contrast, display
counterintuitive behavior: One would expect them to distribute
within the upper range of the [0,1] interval. If this were the
case, then it should be possible to find a threshold
discriminating between low p-values (true discoveries) and
high p-values (false discoveries). However, this frequent idea
fails to consider how p-values are constructed: A p-value of X%
indicates that among false discoveries (and only them), exactly
X% of the other p-values will be lower than X%, whereas the
others will be greater. As a result, the p-value for false
discoveries must uniformly distribute across the [0,1] interval.
Figure 2b illustrates a simulated data set where none of the
proteins are differentially abundant.
Consequently, if a quantitative data set contains a proportion

π0 of false discoveries and 1 − π0 of true discoveries, then the
histogram should theoretically look like the one shown in
Figure 3a, which represents a combination of those in Figure 2.
In practice, histograms for real data are not this “clean” (see
Figure 4). However, to understand the logic underlying
estimation of the FDP, it is best to work in the “cleaner”
theoretical case. If we zoom in on the left-hand side of this
histogram (see Figure 3b), then two observations can be made:
• First, it would be good to be able to tune the selection

threshold to select all of the true discoveries and a minimum
number of false discoveries, as illustrated by the vertical dashed
line in Figure 3b.
• Second, if the data set is “big enough”, then the histogram

tends to be smooth. In this case, it becomes possible to
determine a first rough estimate of the FDP by computing the
ratio depicted by the colored boxes in Figure 3b.
To compute this ratio, we must introduce some additional

notation. Let:
• α be the user-tuned p-value threshold (the vertical dashed

line in Figure 3b)

Figure 2. (a) Histogram representing p-values for a data set in which
100% of proteins are differentially abundant. (b) Histogram
representing p-values for a data set in which the proteins are not
differentially abundant.
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• m be the total number of putative discoveries in the data
set
• k be the number of selected discoveries
On this basis, a first estimator of the FDP can be simply

derived as the proportion, α, of the total number of false
discoveries, m × π0 (i.e., the numerator on the colored-box
formula from Figure 3b), divided by the total number of
selected discoveries, k (i.e., the denominator)

α π
≈

× ×
= ̂m

k
FDP : FDP0

(4)

Of course, this estimate is rather crude. This is why one uses
the “hat” notation: It is helpful to recall that it is not strictly
speaking equal to the FDP. However, it illustrates that it is
possible to leverage the large amount of putative discoveries to
produce a smoother histogram, from which additional
information can be extracted.
As already mentioned, our reasoning was based on a

theoretical histogram. In practice, the data seldom distribute
exactly as expected. For instance, Figure 4 shows the p-value

histogram for the Exp1_R25_prot data set14 provided in R
package CP4P. This data set is derived from a differential
analysis of proteins in two groups of three replicates. The
protein samples contain an equal background of yeast proteins,
into which UPS1 human proteins have been spiked.15 In the
second condition, the concentration of UPS1 is 2.5 times larger
than in the first, so that in the end all of the UPS1 human
proteins (and only them) should be differentially abundant.
After individually testing each protein (either human or yeast),
a list of p-values is obtained for which the histogram is shown in
Figure 4.
Comparison of the histograms in Figures 3 and 4 shows that

the silhouettes do not match.16 The difference in behavior
between the true and false discoveries is blurred, making it
impossible to precisely define α and π0 and thus to accurately
estimate the FDP with eq 4. This is why it has been necessary
to rely on statistical theory to develop more robust estimators
for the FDP, as discussed in the next section.

Figure 3. (a) p-value histogram for a data set composed of 100π0% of false discoveries and 100(1 − π0)% true discoveries (here π0 = 0.97). (b)
Zoom on the left-hand side of the histogram, where α corresponds to the selection threshold.

Figure 4. Histogram of the p-values associated with the differential abundances of the proteins from the Exp1-R25-prot data set:14 In red, the yeast
proteins from the background, in green, the human UPS1 proteins.

Journal of Proteome Research Tutorial

DOI: 10.1021/acs.jproteome.7b00170
J. Proteome Res. 2018, 17, 12−22

15

http://dx.doi.org/10.1021/acs.jproteome.7b00170


5. WHAT ARE FDRS?
Essentially, an FDR is an estimate of the FDP that is endowed
with some important statistical properties (see Efron’s book17

for a survey of the subject). Mainly, an FDR must be
• Conservative: That is, it should not underestimate the real

FDP, or, at least, it may do so but only with a controlled
probability. This is essential to ensure that the number of false
discoveries selected does not exceed the number estimated
(and accepted). In other words, conservativeness is essential to
the QC of the biological conclusions.
• Asymptotically convergent: That is, in the long run, the

average of a large number of FDR computed on data sets with
the same statistical distributions should tend toward an upper-
bound of the real FDP.
Statisticians have worked extensively on these properties but

have unfortunately failed to reach a consensus on their precise
implementation. For instance, even their mathematical
definitions differ slightly depending on whether we use
Benjamini and Hochberg’s framework19−22 (BH) or that
developed by Storey and Tibshirani23−27 (ST). However,
from the practical viewpoint of proteomics data analysis, these
technical details have little or no influence; in fact, the BH and
ST families are similar on many points, and these common
elements are those on which it is important to focus.
First, both families are more or less related to the naive

estimator of the FDP discussed above (see eq 4).
Consequently, FDRs from both families need to estimate π0.
Second, both families have the same type of “relatively weak”

sensitivity with respect to the volatility of the estimate of π0.
Conveniently, it is not essential to precisely determine π0
(although it would be a bonus); what really matters is to
avoid its underestimation. This is why, in the original work of
Benjamini and Hochberg, they used π0 = 1. This is also why in
the Introduction we spoke about using a rough estimate for π0.
A precise estimation would be necessary to reliably define the
probability that a putative discovery is false, but a hand-waving
overestimator is sufficient to produce a good FDR (regardless
of whether it is a BH or an ST one). Finally, this explains why
numerous statistical works14 have been devoted to defining
different π0 estimates that can be inserted into the different BH
and ST frameworks.
Third, both families can be cast into the same algorithmic

procedure, summarized as follows:
1. Sort putative discoveries by increasing p-values

= ≤ ≤ ≤ ≤ =−p p p p p p... m mmin (1) (2) ( 1) ( ) max (5)

2. Walk through the list of p-values from p(1) to p(m), and for
each p(k), k ∈ [1,m]
2.1. Assume that in eq 4, one tunes α = p(k) (i.e., α is tuned to

select exactly the first k discoveries) and compute the resulting
naive estimate

π
=

× ×
̂k

p m

k
FDP( ) k( ) 0

(6)

2.2. Store ̂FDP(k) in the kth cell of an intermediate table
3. Walk through this intermediate table, from 1 to m
3.1. Compute the FDR associated with the set of the k best

discoveries, that is, the set {protein(1), ..., protein(k)}, by
applying the following computation

= ̂
≥

iFDR({protein , ..., protein }) min(FDP( ))k i k(1) ( ) (7)

3.2. Store the corresponding FDR in the kth cell of the result
table.
4. Walk through the result table from 1 to m and stop just

before meeting an FDR value that is greater than acceptable
(say β%). Let N be the index of this value. The set {protein(1),
..., protein(N)} therefore has an FDR of β%, which means one
can roughly assume its FDP is slightly smaller than β%.
As indicated at the very beginning of this tutorial, q-values,

adjusted p-values, and FDR are rather similar concepts.28 We
will now explain why. If one incorporates eq 6 into eq 7, then
one obtains

π
=

×
×

≥
⎜ ⎟⎛
⎝

⎞
⎠

m
i

pFDR({protein , ..., protein }) mink i k i(1) ( )
0

( )

(8)

which underlines FDRs at various decision thresholds can be
derived from applying a transform to the list of p-values, leading
to the terms adjusted p-value (BH literature) or q-value (ST
one).
The problem with this type of naming convention is that it

sometimes leads nonstatisticians to severely misunderstand the
significance of terms. The most common misunderstanding
here is that q-/adjusted p-values are merely corrections of p-
values, closely connected to them rather than to the concept of
FDR. It is of the utmost importance to remember that a p-value
is an individual property, whereas an FDR, an adjusted p-value,
or a q-value are set properties. Thus a p-value relates only to the
individual putative discovery with which it is associated and
nothing else; if the rows in a table of proteins associated with p-
values are shuffled, filtered out, or merged with another table,
then the p-values remain meaningful. In contrast, any FDR,
adjusted p-value, or q-value relates to a set. Even if it looks like
this value is associated with the kth putative discovery, it is in
fact linked to the entire set of putative discoveries with smaller
p-values. Thus if the table of proteins is ordered by increasing
p-values, then FDR, adjusted p-value, or q-value is meaningful
(it relates to the set of lines above), but if the lines of the table
are shuffled, then there is no visually obvious way to relate the
FDR, adjusted p-value, or q-value to the set to which it
corresponds. Similarly, any modification of the data table (for
instance, protein filtering on the basis of biological evidence, or
merging with another data set) will make the FDR spurious.

6. LOCAL-FDR: WHY HAVING “EVEN BIGGER” DATA
IS AN ADVANTAGE

Our line of reasoning so far was as follows: If sufficient
knowledge on the behavior of the data has been garnered, then
“standard behavior” can be defined (known to statisticians as
the null hypothesis distribution), and thus each putative
discovery can be tested individually. If a large number of
putative discoveries are considered simultaneously, as in any
high-throughput omics experiment, then the p-value distribu-
tion (or histogram) can be used to define a conservative
estimate of the FDP, termed FDR. This FDR can be used as a
QC measure, as an FDR of X% can be used to claim something
like, “The proportion of falsely differentially abundant proteins
in my protein list is likely to be lower than or equal to X%.”
Although useful, this FDR remains a set property that qualifies
the entire protein list, whereas an individual QC metric for each
protein would be of greater interest. As indicated in the
Introduction, it is generally not possible to refine the QC
metrics for individual proteins; however, with large data
volumes, an “in-between” measure can be defined that only
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fits a restricted subset of putative discoveries, which are to some
extent similar.
To understand how, we must assume that for a given

experiment our protein list appears to be ten times longer than
usual. Thus the list can be clustered into 10 homogeneous
groups sharing common features. Within each group, the
number of proteins remains large enough to allow calculation of
a specific FDR for each group individually, following the line of
Section 5.
To define these homogeneous groups, a first solution is to

rely on any available covariates. For instance, proteins can be
grouped according to the number of peptides identifying them
(the underlying rationale being that the more peptides
identified, the more reliable the quantification). Alternatively,
one can rely on the ratio of missing quantitative values or any
other covariate related to the quality of each protein
quantification. The FDR computed for a group of “higher
quality” would be expected to be smaller than that for a group
of “lower quality”.
Another solution is to define the groups according to the test

statistics itself. In this case, the proteins are sorted by increasing
p-value, and for each possible value, only the subset of proteins
belonging to a specific interval around is considered. Thus a
“sliding subset” of proteins emerges rather than a hard
clustering into groups. This approach produces a locally
defined FDR for each point of the range of p-values, as
illustrated in Figure 5, and is known as local-FDR.17 Finally, a

local-FDR is a QC measure that relates to such a small set that
it is nearly an individual property. Although it sounds
convenient, local-FDR is a double-edged sword. In the limit
case where the histogram depicted in Figure 5 is perfectly
smooth (which would require an infinite number of proteins),
the local-FDR converges toward the probability that a selected
discovery is false. This probability, which we have been looking
for since the Introduction, finally becomes accessible, at least in

theory. However, in practice, infinite data cannot exist; at best,
one “only” has a huge volume of data, producing a “reasonably”
smooth histogram that is compatible with computation of a
fairly robust local-FDR. If the volume of data is not large
enough, then the histogram profile will be too irregular and
local estimates will be unstable. Thus a trade-off must be sought
between the “locality” of the estimate (the more local the
better) and its robustness (the more local, the less robust).
Although proteomics researchers classically desire the most
refined local QC metrics, it is the computational engineer’s
duty to advise the use of more global ones if they are the only
ones to be trusted.
When comparing these two approaches, let us note that

local-FDR uses a single null distribution for all of the sliding
windows, whereas on the contrary, in the per-group
computation of FDR, one commonly uses a specific null
distribution for each.

7. UNVEILING THE STATISTICAL FOUNDATIONS OF
FDR AT THE IDENTIFICATION STEP

So far, we have only relied on quantitative analysis because it
naturally matches the statistical framework of hypothesis
testing. However, from a historical perspective as well as
from the viewpoint of data processing, FDR is primarily
associated with identification QC. In this setting, the practical
goal is to filter out incorrect PSM (peptide-spectrum matches),
so as to retain only correct ones. Unfortunately, it is less
intuitive to relate the identification QC problem to the
hypothesis-testing framework. This state of affairs may lead to
misinterpretation of results and, consequently, to spurious
conclusions, as recently discussed.2

The purpose of this section is not to describe the
identification workflow from a theoretical statistics viewpoint.
Its objective is more humble. It is only to link the theoretical
foundations of FDR to the practical setting of PSM validation.
To do so, one needs to find in the PSM validation process
different elements that can be considered as counterparts to the
building blocks of FDR theory that have been described in
Sections 4 and 5. Concretely, one needs to check that (1) true
and false discoveries are properly defined; (2) a null
distribution is available; (3) a test statistics can be used to
derive p-values on which a mixture model equivalent to that of
Figure 3 can be constructed; and (4) an estimate of the FDP
such as eq 4 is available.
7.1. True and False Discoveries Definition

Because true discoveries are what we are interested in, they
should be defined as correct PSMs. Consequently, false
discoveries should be the incorrect PSMs and putative
discovery can therefore be defined as any possible pair of the
type {Peptide; Spectrum}, regardless of whether it is correct or
incorrect. Thus the set of putative discoveries is more abstract
than in the quantitative analysis, becoming a combinatorial set
(i.e., made of a series of possible combinations).
7.2. Null Distribution

If a {Peptide; Spectrum} pair is randomly selected from among
all possible pairs, then it is highly unlikely to have a correct
PSM by chance. In other words, the “standard” is for PSM to be
incorrect. However, it is harder to qualify a mismatch than a
match, or to paraphrase Leo Tolstoy, “All correct PSMs are alike;
each incorrect PSM mismatches in its own way.” Clearly, this
makes it more difficult to define a “standard” than in the
quantification setting (where equal abundance distribution was

Figure 5. Local-FDR is used to estimate the FDP locally, in contrast
with the classical FDR (see Figure 3b), which is a global estimate.
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sought). Fortunately, this difficult task is conducted by most
database search engines, so that practitioners need not worry
about it.

7.3. Test Statistics and p-Value Existence

Unraveling these notions is clearly the most difficult issue: In
numerous cases, the test statistics and the p-values are
computed within the identification engine, yet they are not
provided. Rather, they are transformed into scores that form
the only output accessible to the user. Then, the output score,
noted Si for the ith peptide-spectrum pair, is related to a p-
value, pi, by a formula such as the following

= −S p10 logi i10 (9)

As a result of this one-to-one correspondence between scores
and p-values, to compute an FDR, it is possible to directly work
with the histogram of output scores instead of that of p-values,
as illustrated in Figure 6. Concretely, what really matters is to
have a mixture model to rely on, and whether it depicts p-values
or output scores seldom matters. In fact, the conceptual links
between the mixture model and the computation of the FDR
are so strong that it is sometimes possible to bypass the p-value
computations and to empirically define the null distribution
directly on scores (chapter 6 of ref 17). This explains why there
also exist identification tools where p-value computation is even
not performed as an intermediate step. Similarly, to
discriminate between correct and incorrect PSMs, numerous

postprocessing tools (e.g., PeptideProphet30) directly rely on a
mixture model of scores as the one illustrated on the lower
right-hand panel of Figure 6. However, it is very important to
keep in mind that there always exists a histogram of p-values
that could be used in place of the mixture model and that this is
the very reason why FDR computation is theoretically
supported. If this histogram did not exist, then there would
be no guarantee that conclusions drawn from the mixture
model would be valid. For instance, database search engines
exist with a scoring system that cannot be directly interpreted
in terms of p-values (mainly because PSMs are not scored
independently from one another). Some authors31 point out
that such scoring systems may not be compliant with classical
FDR computation procedures.

7.4. FDP Estimate

At first glance, this is where the main difference between
identification and quantification lies, as the so-called target-
decoy approach32 is used instead eq 4 to estimate the size of the
red rectangle shown in Figure 3b. However, from a theoretical
viewpoint, the underlying rationale is really similar. The
purpose of target-decoy methodology is to artificially create a
large number of false discoveries that can be easily traced
(because the peptide involved in each {Peptide; Spectrum} pair
is a random sequence of amino acids that does not exist in the
protein sequence database). As a result, once the practitioner
has cut the PSM list at a given score threshold, then the PSMs

Figure 6. Schematic illustration of the conceptual link between identification scores and p-values: The arrows indicate how it is possible to shift
between a p-value histogram and a mixture model representation, so that direct FDR computation on the basis of identification scores is theoretically
supported.
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with a real peptide (termed “targets”) can be distinguished from
the others (termed “decoys”) to compute the proportion of
decoy PSMs. In this scenario, the strong assumption is made
that mismatches (involving a real peptide) have the same
distribution of scores as the decoy PSMs, so that among the
PSMs above the threshold, the number of false discoveries can
be derived from the number of decoys.33 Although the
approach is empirical, it can be demonstrated to fit in the
classical FDR framework.10,33 However, as a side effect, the
same weaknesses as with the classical FDR computation
procedure affect target-decoy approaches: An overly biased
estimate of π0 may affect the results,34 the size of the decoy
database and the uniformity of sampling of the false discoveries
are critical,10 the volatility of the FDP estimate may require a
control of the confidence interval,33 and so on.

8. FROM PEPTIDE-LEVEL LOCAL-FDR TO
PROTEIN-LEVEL FDR

In Section 7, we uncovered the relationships between classical
statistics-based FDP estimation and target-decoy approaches.
We concluded with a few weaknesses of the target-decoy
approaches, which are directly inherited from statistical theory.
Now we present a more optimistic viewpoint, by leveraging this
theoretical connection to define local-FDRs for peptide
identification.
The first approach applies the same line of reasoning as

depicted in Figure 5 (where the local-FDR is derived from the
histogram of p-values) to the histogram of scores (e.g., lower
right-hand part of Figure 6) to produce the computation
illustrated in Figure 7. This procedure returns the so-called
posterior error probability (or PEP), which is already a popular
alternative to FDR.35−37

Another approach is to cluster PSMs according to some
additional covariate(s) and to provide a specific FDR for each
cluster. Reiter et al.38 propose to cluster the target and decoy
PSMs based on the identities of the parent proteins to produce
a target-decoy-based estimate of the FDP at the PSM level for
each protein. Because the putative discoveries are split between
an enormous number of clusters (as many as proteins), it is
rather difficult to gather enough data within each cluster to
achieve reliable FDP estimates. Because the size of the data set
is essential to its successful application, the article title indicates

that the methodology is applicable with “very large proteomics
data sets”. However, its main feature is not that it proposes a
PSM-level FDR for each protein but that it transforms the
PSM-level FDRs into a protein-level FDR. This is achieved by
modeling each protein by the random draw of a series of
colored balls from an urn (say the black balls represent the
decoy peptides and the white ones the target peptides). The
outcomes of this type of random experiment are known to
distribute according to hypergeometric law (with different
parameters for correct and incorrect proteins), making it
possible to define the “standard behavior” of proteins with
respect to the distribution of target and decoy peptides.
Consequently, a null hypothesis distribution is produced,
making it possible to define protein-level p-values (or scores)
and thus an FDR.
Much effort has been devoted in recent years to defining a

protein-level FDR. However, it is a complex issue. As recently
discussed,12 the very definition of truly and falsely identified
proteins can be questioned: Is a falsely identified protein absent
from the sample? Or is it the result of an inference from
incorrectly validated PSMs (even though a protein can be
correctly identified on the basis of incorrect peptide-level
evidence)? While practitioners expect the first case, the
solutions currently available tend to be based on the second.
Another difficulty relates to the following simple observation:

To compute an FDR at the protein level, putative discoveries
must be defined as putative protein identifications, endowed
with a score of known distribution for incorrect identifications
(to define the null hypothesis). Unfortunately, analysis is
conducted at peptide level, and it is therefore necessary to
aggregate the peptide-level scores into protein scores while
precisely controlling how the aggregation process influences the
distribution of scores (for both true and false identifications). In
general, this aggregation remains a very difficult statistical
subject, for which only a few results are available to date. In the
specific case where the data set is very large, the hypergeometric
model, as proposed by Reiter et al.,38 can be effectively applied.
For smaller data sets, no strategy dominates the state-of-the-art
(section 7 of ref 11). Because no strategy is perfect, an
additional source of errors may be introduced during
aggregation. Then, one runs the risk of increasing the difference
between the real FDP and the computed FDR when shifting
from peptide level to protein level.
Of course, the expectations of wet-lab researchers for

protein-level QC are legitimate because they are easier to
interpret and relate to the biological problem. However, in the
meantime, computational experts must determine whether this
increment of biological interpretability is worth authorizing
hidden and unwanted distortion of the QC metrics. To the best
of the author’s knowledge, no survey has benchmarked the
various protein-level FDRs so far from this angle. Therefore,
computational experts currently have no material with which
they could find a trade-off between the gain in interpretability
and the possible loss of accuracy this distortion might produce.

9. PRACTICAL RECOMMENDATIONS AND
DISCUSSION

In this section, the theoretical background reviewed so far is
used to derive some guidelines. However, one should recall that
statistical science has developed like many other sciences: First
are the foundations, consisting of basic, commonly accepted,
and rarely discussed knowledge that can be presented in
tutorials. From these foundations, different protocols have

Figure 7. Applying the concept of local-FDR to the histogram of
peptide identification scores produces the concept of PEP.
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emerged based on each individual’s experience: These
protocols are somewhat subjective, as two different ones may
be equally correct. As a result, unlike the rest of the article, the
elements given here remain debatable and amendable. This
being noted, a few very practical questions will now be
addressed.
1. Concretely, what does “enough”, “big”, or “even bigger”

data mean? For instance, at what point is it safe to consider the
volume of data to be large enough to compute local-FDR?
2. Throughout the text, “user-defined thresholds” were

referred to with regards to scores, p-values, or FDRs, but how
should these thresholds be tuned in practice?
3. When processing real-life data sets, researchers focus not

only on the scores or the p-values but also on an important
number of covariates that are known to be relevant. How can
these be accounted for in the statistical framework presented so
far?
With regards to the first point, it is at least possible to define

orders of magnitude. For example, in Section 3, “enough data”
referred to the fact that it was possible to garner sufficient
observations to define the null distribution. However, in
proteomics, either for identification or quantification, the
statistical tests that should be used (and the corresponding
null distributions) are well known: the beta-binomial test for
spectral count data,39 Student family tests for eXtracted Ion
Chromatogram data, the tests embedded by search engines for
identifications, and so on. As a result, this issue is practically
resolved. Next, we know that “big data” are necessary to
compute an FDR, so that the question arises, :When does an
FDR become meaningful?” Intuitively, it is best to avoid talking
about a percentage of false discoveries if there are fewer than
one-hundred selected discoveries (what would be the meaning
of 1% FDR on a list of 35 proteins?). However, even 100
discoveries may be borderline. In fact, to represent the
histogram of the data, as illustrated in Figure 4, it appears
that smoothness requires more than 100 observations, so that a
few hundred (e.g., from 500 to 1000) make more sense. Finally,
“even bigger data” is required to define local-FDRs. We
considered two cases: In the first one, the data set is binned
into N groups for which N separate FDRs are computed, so
that one naturally needs to have N times more data to achieve
reliable estimates. Otherwise, it may be wiser to forget local-
FDR and to stick to more global QC measures. In the other
cases where a “sliding set of discoveries” was considered, such
as with Efron’s local-FDR or with PEP, the issue relates more to
the regularity of the distribution (see Figure 4) than to the
volume of data. Therefore, no simple general rule holds (ref 35
and chapters 5 and 7 in ref 17).
Before addressing the two remaining questions (user-defined

thresholds and covariates), let us go back to the reason why
FDR is necessary in proteomics. From what we have discussed
so far, in statistics, FDR Control mainly relies on an estimation
procedure: Given a list of m discoveries, we first attempt to
estimate an upper-bound of the FDP in the k first elements of
the list, ∀k ≤ m. Second, on the basis of this estimate, the value
for k can be chosen so as to fit with a user-expected FDR value.
Basically, once the estimate has been calculated, the FDR
control simply amounts to adjusting some threshold to cut the
list to the right length.
Conversely, from a proteomics viewpoint, FDR Control is

mainly based on filtering procedures: The issue is largely to
prevent the spread of false discoveries through the application
of stringent procedures derived from some proteomics

expertise. To do so, the practitioner defines several knowl-
edge-based filters at PSM, peptide, or protein level, for
instance,12 mass accuracy, peptide retention times, peptide
length, compliance with digestion rules, a priori amino acid
sequences, protein length, or a minimal number of matching
peptides (e.g., the two-peptide rule). Similarly, at the
quantification step, proteins with too many missing values
can be filtered out,40 as can proteins for which the fold-change
is too low.5 These are common good practices that are
experimentally proven to reduce the number of false
discoveries. In real terms, they amount to sorting the
discoveries according to additional covariates that the
practitioner can interpret.
False discovery estimation (the statistician’s viewpoint) and

false discovery filtering (the practitioner’s viewpoint) are two
different approaches that are both important for QC. First, both
of them have drawbacks. As previously explained, false
discovery estimation is based on asymptotic theory: Even if
the FDP will be well-controlled in the long run average, the
FDR cannot be used as a precise and rigorous equivalent of the
FDP in any single given proteomics experiment. On the
contrary, false discovery filtering is no better: Even if the filters
are plainly sensible, they provide no estimation of the FDP.
Second, both approaches are interesting: Filtering relates to the
practitioner’s capacity to keep a critical eye on his/her own
proteomics experiment to publish the most reliable material,
whereas false discovery estimation provides statistical guidelines
that mainly guarantee that results from different articles can be
cross-compared and that different experiments from different
researchers involve the application of a similar trade-off
between the risk of publishing false discoveries and the benefit
of publishing the longest possible list of true discoveries.
Finally, the two viewpoints are complementary, and it makes

sense to start by filtering out false discoveries by multiplying
stringent procedures and to subsequently estimate their
proportion on the final filtered list. With this in mind, we
will now address the issue of how to tune the p-value/score/
FDR thresholds. These thresholds are of little interest in the
practitioner’s context of false discovery filtering but are of prime
importance to estimate the number of false discoveries. Thus
depending on who will receive the results of the proteomics
analysis, these thresholds may or may not be important. For
example:
• To publish, it is mandatory to apply a classical threshold

(say 1% FDR if the journal does not stipulate a specific value)
so as to allow cross-comparisons with other published data, as
mentioned above.
• If the proteomics analyses are part of a preliminary study,

where a good trade-off between false selected discoveries (in a
classical QC perspective) and unselected true discoveries (so as
to maximize proteome coverage) is sought, then it makes sense
to rely on the Receiver Operating Characteristic (ROC) curve41

to define the optimal FDR level.
• On the contrary, if the results are sent to a partner lab who

only has the funds to manually validate, let us say, 15 proteins,
regardless of the number of significantly differential ones, then
it is not necessary to compute an FDR at a specific level: The
ID of the 15 proteins with the lowest p-value should be
transmitted to the lab (keeping in mind that transforming p-
values into q- or adjusted p-values does not modify their
ranking). Then, computing the PEP for these 15 proteins may
be an additional QC metric, the advantage of which will mainly
depend on whether the collaborators can interpret it.
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Finally, the definition of these statistical thresholds is very
context-dependent, and they should not be given more than
appropriate importance.
Let us now turn to the question of covariates. As it should

have appeared to the reader, the theoretical foundations of
FDR are already complex without trying to account for any
discipline-specific covariates. As a result, computational experts
working in proteomics may have a hard time defining
asymptotically convergent and conservative estimates that
natively incorporate these covariates. However, these covariates
are useful for false discovery filtering as proteomics expertise
relies on them, and there is no reason to omit them. This is
why, during the filtering step, all of the covariates can be used
to define stringent filters, either by hand or by relying on
machine-learning algorithms (e.g., Percolator42). This approach
should produce a more reliable list of discoveries according to
the data owner, on which, as a final QC, an FDR can be
computed (based only on the p-values or their related scores,
regardless of the other covariates).

10. CONCLUSIONS
Over the past few years, the throughput of LC−MS/MS
experiments has dramatically increased so that proteomics has
now definitively entered the realm of big data. As a result,
computational experts are playing an increasingly significant
role in proteomics laboratories, where they make the link
between mass spectrometry expertise and biological expertise.
In this context, this article revisited the statistical foundations of
several concepts (see Table 2 for a summary), so as to provide

computational experts with additional skills when implementing
data processing routines or exploiting the data produced on a
daily basis in their laboratories. This evolution of proteomics
toward data sciences will continue and in the near future will
generate unprecedented opportunities to investigate pro-
teomes. Thanks to a better understanding of all of these
FDR-related notions, more refined QC of proteomics data will
be possible, either through new types of experiments leading to
even larger data sets or through meta-analyses of the extensive
data volumes already available in public databases.
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