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Chapter 7

False Discovery Rate Estimation in Proteomics

Suruchi Aggarwal and Amit Kumar Yadav

Abstract

With the advancement in proteomics separation techniques and improvements in mass analyzers, the data 
generated in a mass-spectrometry based proteomics experiment is rising exponentially. Such voluminous 
datasets necessitate automated computational tools for high-throughput data analysis and appropriate 
statistical control. The data is searched using one or more of the several popular database search algo-
rithms. The matches assigned by these tools can have false positives and statistical validation of these false 
matches is necessary before making any biological interpretations. Without such procedures, the biological 
inferences do not hold true and may be outright misleading. There is a considerable overlap between true 
and false positives. To control the false positives amongst a set of accepted matches, there is a need for 
some statistical estimate that can reflect the amount of false positives present in the data processed. False 
discovery rate (FDR) is the metric for global confidence assessment of a large-scale proteomics dataset. 
This chapter covers the basics of FDR, its application in proteomics, and methods to estimate FDR.

Key words False discovery rate, Posterior error probability, Target-decoy, Peptide spectrum matches, 
Statistical validation, Shotgun proteomics

1  Introduction

In any large-scale high-throughput study, including genomics and 
proteomics, a large number of statistical hypothesis are tested, usu-
ally independently, for significance [1]. Each hypothesis tested (a 
gene, a transcript, a peptide, etc.) yields a p-value, e-value, or a score 
that depicts the quantitative measure of that hypothesis being cor-
rect. In proteomics, shotgun proteomics data is searched using a 
database search algorithm that provides such confidence metrics 
after searching spectra against peptides in a given FASTA database.

While such metrics can reflect the “goodness of fit” of an experi-
mental spectrum to the assigned peptide and related chances of 
error in its identification, it cannot reflect the associated error in 
the whole dataset. For example, selecting peptide spectral matches 
(PSMs) or hits with p-value ≤ 0.05 means that each PSM has a 5 % 
or less chance of incorrectly being assigned as a significant match. 
This, however, does not mean that all PSMs passing this threshold 
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will have a collective error of 5 %. Any PSM, even with a low 
estimated error of 5 %, could turn out to be wrong. It could occur 
by (highly unfortunate and rare) chance that all PSMs (each with 5 
% estimated error) turn out to be wrong.

One cannot estimate the percentage of false hits in the accepted 
PSMs by using p-value as a metric because this is a single spectrum-
specific significance measure. To assess global false hits or error rate, 
one needs to understand population-level false estimation metrics. 
This is a classic case of what is called as the multiple testing problem; 
that is, when multiple independent statistical hypothesis tests are 
conducted, single hypothesis significance measures (like p-value) 
are neither sufficient nor amenable to extrapolation to calculate 
population error rate. By random chance alone, there will be many 
hits which may turn out to be false [2] in a collection of hits, each 
with p-value ≤ 0.05 with a final error rate of more than 5 % 
globally.

Adjusting for multiple comparisons can be achieved by applying 
Bonferroni correction which readjusts significance threshold 
(α = 0.05) to control the false positives. For n spectra, the 
population-level significance threshold becomes 0.05/n, to adjust 
for the error rate of 5 % globally. This method is very stringent and 
false positives are extremely low when n is large. But this occurs at 
the cost of false negatives. To avoid false positives, this method 
excludes many true positives with good scores and p-values. False 
discovery rate (FDR) is a measure of the incorrect PSMs among all 
accepted PSMs [2–4]. Proposed by Benjamini and Hochberg [5] 
as an alternate to the Bonferroni correction, it is defined as the rate 
of false positives in accepted hits. FDR is a less stringent metric for 
global confidence assessment. In the context of proteomics, it is a 
global estimate of the false positives present in the results obtained 
by a database search algorithm. There are many different strategies 
to estimate FDR like the nonparametric simple target-decoy (TD) 
database searches [4, 6] and parametric or semi-parametric mix-
ture modeling approaches used in the Trans-proteomics pipeline 
(TPP) [7–10].

For estimating the FDR, a null model is required for which a 
decoy database search is carried out in proteomics. In the TD 
search strategy, the database search is carried out on the true (tar-
get) as well as null (decoy) database. A decoy database is con-
structed by shuffling, randomizing or by simply reversing the target 
database. It is the simplest approach to calculate FDR and requires 
no distributional assumptions, i.e., nonparametric in nature. The 
basic assumption made for TD approach is that the number of false 
PSMs in decoy search will be equal to the number of false PSMs in 
target search above a given threshold score. The database search 
for this approach can be performed together (concatenated) or 
separately with the decoy database. A concatenated search can be 

1.1  False 
Discovery Rate
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conducted by combining the target and decoy databases together 
(both target and decoy) as proposed by Elias and Gygi [6]. In a 
separate database search [4], as the name implies, both target and 
decoy databases are searched separately and scored using a search 
algorithm. The number of false positives divided by the total hits 
allows for easy calculation of FDR.  Overview of this process is 
shown in Fig. 1.

While FDR is a global measure of population error rate, this com-
municates nothing about confidence of individual PSMs. A PSM-
specific metric is needed which conveys the confidence measure of a 

1.2  q-Value

Fig. 1 There are two database search strategies—separate or combined database search. In separate search 
target and decoy databases are searched separately and FDR is estimated using Kall’s method (see text). Each 
spectrum has one target and one decoy best score. In combined/concatenated approach, one unified target-
decoy database is searched in which both TD peptides compete with each other. Each spectrum has one best 
score, either from target or decoy but not both. This also changes the score distributions

FDR Estimation
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particular PSM after FDR correction has been applied. Thus, q-value 
was introduced by Storey and Tibshirani [1], which is defined as the 
minimum FDR cutoff at which a particular PSM can be accepted. It 
is the property of a single PSM rather than a set of PSMs. The q-value 
of a PSM provides a direct measure of significance for a particular 
PSM with respect to the complete dataset and the risk accrued to 
the  total accepted matches if that hit is deemed significant. For 
example, if a PSM with q-value 0.07 seems biologically important, 
we will need to lower the FDR threshold to 7 % in the dataset to 
accept this PSM as significant. A sorted list of hits by q-value becomes 
a monotonous function of search score/p-value and is thus easily 
interpretable [2]. A dataset can be revisited to select a biologically 
important hit without the need to recalculate the FDR.

Posterior error probability (PEP) is the probability of a PSM to be 
incorrect. Borrowing from the example given by Kall et al. [11], a 
PEP of 1 % would signify that there is 99 % chance for the PSM to 
be correct. It is also referred to as local FDR, as unlike FDR it 
measures the error rate associated with a single PSM. From Fig. 2, 
it can be seen that FDR represents the ratio of area under incorrect 
(decoy) region for any given score threshold x to the area under 
the total region for the same threshold. PEP is ratio of the infini-
tesimally small areas (virtually the height) of incorrect to total hits 

1.3  Posterior Error 
Probability

Fig. 2 There is considerable overlap between the correct and incorrect hits shown 
here as score frequency distribution and the corresponding set-based visualiza-
tion. FDR is applied to control the proportion of false hits from getting accepted
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in a local score region of x. Both are complementary to each other 
but have different meanings. While the q-value conveys the risk 
(error introduced) in the whole dataset if we accept the PSM at 
hand, the PEP on the other hand informs us whether the PSM is 
likely to be correct or not.

FDR can be calculated from PEP by integrating (summing up) 
all the PEPs. PEPs can be accurately calculated by using machine 
learning to learn the model parameters from labeled (correct and 
incorrect)  training data. For any given score x, the PEP can be 
predicted from the model parameters. This strategy is used in 
PeptideProphet [8] and ProteinProphet [9].

2  Materials

Any FDR strategy would require a large-scale shotgun proteomics 
experiment data. This data should be searched using a database search 
algorithm. A normal desktop computer with enough memory 
according to dataset size should be useful. Perl programming lan-
guage and ProteoStats [12] should be configured on the computer.

3  Methods

To calculate FDR, the spectra are searched against a target and a 
decoy database to obtain the top-ranked PSMs. This can be 
searched either separately or in a combined database search, each 
with different assumptions on target decoy competition and false-
positive estimation. This section briefly explains how to use 
ProteoStats library for FDR estimation. ProteoStats requires the 
data to be searched using separate TD approach as it can perform 
the TD competition after the search as suggested by Fitzgibbon 
et al. [13]. More details can be found in ProteoStats documenta-
tion, supplementary material of [12], and blog post on ProteoStats 
[14]. Based on how TD matches are defined (in terms of TD com-
petition) and how false positives are defined, there are five methods 
for FDR calculation. Mainly separate and concatenated FDR are 
two main methods based on the mode of  search. Several variants 
of these formulations have been proposed which may provide 
better results [15, 16]. Though the community majorly uses Kall’s 
or Elias and Gygi’s formulae due to ease of calculation, there is no 
consensus on which formula is better or appropriate. Currently, 
the proteomics community agrees on any method as long as it is 
clearly defined. We also propose that users can try all methods in 
ProteoStats for a specific workflow for standardizing the protocol 
according to search engine, decoy strategy, data quality, etc. In our 
hands, we have found FDR with percentage of incorrect target 
(PIT) correction and refined methods to work better than others.

FDR Estimation
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TD searches are completed separately and results in the form of 
target and decoy top hits provided as input to ProteoStats. When 
the searches are conducted separately, all different FDR methods 
can be applied a posteriori, but if a concatenated search is used, 
only concatenated FDR method can be applied as the correspon-
dence between TD top hits is lost. ProteoStats removes the pep-
tides identical in decoy and target considering isoleucine and 
leucine as identical. The resulting TD sets are sorted separately on 
the basis of scores/e-values/p-values from best to worst and 
depending on the search strategy chosen the FDR, q-value, and 
receiver operating curve (ROC) are calculated [12]. There are 
other supplementary modules for chart generation and comparing 
results (see Note 1).

For the calculation of FDR, there are different methods/for-
mulae available:

	 1.	Separate/simple FDR (FDRS)
This method by Kall et  al. [4] assumes that the number of 
decoys passing the threshold (D) represents the number of 
false positives in the target PSMs (T) above the same threshold 
(see Note 2):

	
FDRS =

D
T 	

(1)

	 2.	Concatenated FDR (FDRC)
This method by Elias and Gygi [17] assumes that for any num-
ber of decoys (D) passing a given threshold, there are equal 
number of false hits in target PSMs (T) above that threshold. 
Adding up the false hits in decoy and target, the number of false 
positives is therefore double of the decoy count above thresh-
old. In this search, TD competition results in either target or a 
decoy best hit for any given spectrum, the reference population 
in which FDR is calculated is not the same as other methods:

	
FDRC =

´
+

2 D
T D( ) 	

(2)

	 3.	FDR with PIT correction (FDRPIT)
Kall’s formula for simple FDR did not consider the incorrect 
target PSMs during simple FDR calculation which tilts the bal-
ance of random matches in decoy’s favor due to higher decoy 
population. To correct for this effect, it was suggested to cal-
culate the PIT, which is used as a factor to accurately deter-
mine the FDR. Note that the name PIT is a misnomer as it is a 
fraction and not a percentage. It is similar to the notion of 
fraction of true negatives, П0, as defined in genomics [1]:

	
FDR PITPIT = ´

D
T 	

(3)

3.1  FDR Calculation 
Using ProteoStats
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	 4.	Refined separate FDR (FDRRS)
In this formulation, Navarro et  al. [15] propose that FDR 
should be calculated in the correct reference population (only 
targets). They argued that the estimated false positives should 
not be doubled blindly by observing decoy hits above thresh-
old directly. The decoy PSMs above threshold should not be 
considered false positives if they do not score more than the 
corresponding  target PSM. This causes inflated false-positive 
estimation and leads to overestimation of FDR. The hits could 
be above threshold only in target (target only, TO) or only in 
decoy (decoy only, DO). When both are above threshold, 
either target could be better (target better, TB) or the decoy 
(decoy better, DB). The FDR in the correct reference popula-
tion is calculated by estimating the correct false positives and 
dividing by corrected total population [15]:

	
FDR

DB DO
TB TO DBRS =

´ +
+ +

( )
( )
2

	
(4)

	 5.	Refined concatenated method (FDRRC)
In this formulation, Cerqueira et  al. [16] argued that since 
decoy hits are by definition false, they can be disregarded in 
FDR estimation and thus the FDRC formula is changed to 
yield the following formula:

	
FDRRC =

-
D

T D( ) 	 (5)

FDR calculated at PSM level is not the same as protein-level 
FDR. Although the goal of a shotgun proteomics experiment is to 
assess protein-level significance, the hypotheses tested from shot-
gun proteomics data are spectra. Due to variable abundances of 
different proteins and the non-random distribution of peptides 
across these proteins, one-to-one correspondence between peptide 
and protein FDRs does not exist. Due to this incongruity, calculat-
ing protein FDRs is complicated.

Since the decoy database is made out of the target database 
with equal number of proteins and same protein length distribu-
tion, we can simply use the same algorithm (see Note 3) to esti-
mate the number of false positives owing to the identification of 
the decoy proteins. This step requires a robust protein score which 
can help in estimation of protein FDR. The FDR for protein esti-
mation is calculated as the ratio of the expected number of false-
positive protein identifications (those that have a hit to the decoy 
database proteins) to that of the total number of protein identifica-
tions mapping to the target database at any threshold protein 
score. For protein FDR, MAYU software can be used which per-
forms protein identification-level FDR on the basis of peptide 
identifications [18].

3.2  Peptide 
to Proteins

FDR Estimation
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4  Notes

	 1.	Calculating FDR using ProteoStats [12] software is accurate 
and reliable. It is written in Perl and it can be integrated in any 
kind of pipeline easily. In terms of file format inputs, it provides 
great flexibility as it can read proteomics output file format 
from different database searches like Mascot [19], MassWiz 
[20], OMSSA [21], X!Tandem [22], MyriMatch [23], and 
Comet [24]. These results may be processed using a rescorer 
like FlexiFDR [25] for MassWiz, Percolator [26–28] for 
Mascot, and OScore for Sequest [29] to improve identification 
results. Tab-delimited files can also be used for FDR to support 
other algorithms. It provides with CSV/Excel-based output 
files which can easily be interpreted and used for further analy-
sis in R. It also contains plotting functionalities for visual analy-
sis of the results obtained. Comparison of results and Venn 
charts can also be generated.

	 2.	A general algorithm is described for FDR estimation using 
Kall’s method. The pictorial representation is shown in Fig. 3. 
Please note that this is a generic algorithm for simple FDR 
calculation. This code is provided within ProteoStats for all 
FDR formulae, so it need not be manually calculated.
(a)	 Sort target results on score/p-value/e-value from best to 

worst hit.
(b)	 Sort decoy results on score/p-value/e-value from best to 

worst hit.

Fig. 3 Target and decoy scores are sorted and iteratively different thresholds can 
then be applied until a desirable level of FDR is achieved. FDR is the ratio of 
decoy/target hits at any particular threshold
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(c)	 For every target score as threshold, count D and T, and 
the number of decoys and targets above threshold.

(d)	 Calculate FDR using Eq. 1. This algorithm explains simple 
FDR using Kall’s method. Other methods differ in definition 
of false-positive counts, so should be accordingly calculated.

(e)	 This FDR is also the q-value for the PSM serving as score 
threshold, and other PSMs with same score.

(f)	 A tabulated list of number of targets and corresponding 
q-value can be used to create an ROC plot.

	 3.	After FDR is calculated, the PSMs and peptides are used for 
protein inference. Similar TD approaches can be used for esti-
mating protein-level FDR estimates although the correspon-
dence between peptide and protein FDR is not same due to 
non-random distribution of peptides across proteins due to 
varying abundances. MAYU [18] is a tool for protein FDR 
calculation though it does not infer proteins. IDPicker [30] is 
another tool which integrates the process but can only perform 
FDR for concatenated search. ProteoStats will be updated in 
near future to support protein-level FDR calculation.
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