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a  b  s  t  r  a  c  t

New  analytical  strategies  for  phosphoproteomics,  both  experimental  and  computational,  have  been
rapidly  introduced  in recent  years,  leading  to  novel  biological  findings  on  the  role  of  protein  phosphory-
lation,  which  have  in  turn  stimulated  further  development  of  the  analytical  techniques.  In  this  review,
we  describe  the  development  of  analytical  strategies  for  LC–MS/MS-based  phosphoproteomics,  focusing
particularly  on  recent  progress  in  phosphopeptide  enrichment,  LC–MS/MS  measurement  and  the  subse-
quent  computational  analysis.  High-coverage  analysis  of  the  phosphoproteome  has  largely  been  achieved
rotein identification
by combining  pre-fractionation  methods  with  multiple  phosphopeptide  enrichment  approaches,  at  some
cost in  LC–MS/MS  measurement  time  and  increased  sample  loss.  Key  points  for  the  future  will  be  to  fur-
ther increase  the  selectivity  and  the  recovery  of  enrichment  methods  to  achieve  higher  sensitivity  and
efficiency  in  LC–MS/MS  analysis  in  order  to detect  protein  phosphorylation  comprehensively,  including
low-abundance  proteins.  This  is expected  to  lead to a  more  detailed  understanding  of  the  mechanisms
and  interactions  of  phosphorylation-mediated  regulatory  pathways  in biological  systems.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction
Protein phosphorylation by kinases is a post-translational mod-
ification that is commonly observed in a wide variety of organisms,
from bacteria to human. Among amino acids that can be mod-
ified with phosphate, serine, threonine and tyrosine are by far
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he most commonly found. In cellular signal transduction path-
ays, the combination of kinase-induced phosphorylation and
hosphatase-induced dephosphorylation works like a switch to
ctivate or inactivate the functions of proteins constituting the sig-
aling pathways, thereby modulating many functions, including
ell growth, cell division, apoptosis and cell death. So, compre-
ensive acquisition of cellular phosphorylation data is crucial to
nderstand cellular functions and mechanisms [1–3].

Though many proteins are phosphorylated by kinases, the abun-
ance of phosphorylated proteins is generally low in cells, and
his represents a bottleneck for comprehensive analysis of the
hosphoproteome. Conventionally, antibody-based methods such
s Western blotting have been used to analyze phosphorylation
f proteins. However, these methods require a phosphorylation-
pecific antibody for each case. On the other hand, shotgun
hosphoproteomics, which utilizes liquid chromatography coupled
ith tandem mass spectrometry (LC–MS/MS) together with highly

elective phosphopeptide enrichment techniques, makes it feasible
o identify tens of thousands of phosphorylation sites on proteins
ithout specifying particular targets. This approach allows the dis-

overy of novel phosphorylation sites, whereas antibody-based
pproaches require prior information on the target phosphorylated
roteins.

Fig. 1 shows the workflow for shotgun phosphoproteomics. Pro-
ein mixtures are first digested into peptides, generally by cleavage
ith trypsin at the C-termini of Lys and Arg, and subsequently low-

bundance phosphopeptides are enriched. These phosphopeptides
re separated by reversed-phase LC and are directly subjected to
andem mass spectrometry (MS/MS). Since huge amounts of data
re generated by LC–MS/MS analysis, the subsequent computa-
ional analysis is crucial for picking peaks from the raw MS  data,
dentifying proteins from the detected peaks, and further system-
tic analysis. In this review, we focus on LC–MS/MS-based shotgun
hosphoproteomics from the viewpoint of technology develop-
ent in the fields of (1) phosphopeptide enrichment, (2) LC–MS/MS
easurement and (3) computational analysis of MS  data.

. Phosphopeptide enrichment

.1. Immobilized metal ion affinity chromatography (IMAC)

Immobilized metal ion affinity chromatography (IMAC) utilizes
he affinity of metal ions for phosphate. Generally these metal
ons are immobilized onto the chromatographic materials via a

etal-chelating moiety. Phosphopeptide enrichment is carried out
y (1) loading samples onto the column to trap phosphopeptides
electively, (2) washing the column to remove unphosphorylated
eptides, and (3) eluting phosphopeptides at high pH or with
hosphate salts. Andersson et al. first introduced Fe3+-IMAC for
hosphopeptides [4].  Since then, other metal ions such as Ga3+, Zr4+,
l3+, Cu2+, Ni2+ have been employed [5].  However, the selectivity is

nsufficient for application of IMAC approaches to large-scale phos-
hoproteome analysis of whole cell lysates, because acidic peptides
aving Glu and Asp also show affinity for IMAC beads. Therefore,
ethyl esterification of carboxylates [6],  change of pH, and opti-
ization of the concentration of organic solvent in the buffer [7–9]

ave been used to improve the specificity of purification, and have
ontributed to a great increase of IMAC selectivity. A recent study
ndicated that Ti4+ immobilized on polymer beads has a superior
apability for phosphopeptide enrichment from whole cell lysates
ompared with IMAC using other metals or metal oxide affinity

hromatography (MOAC; see below). After pre-fractionation by
trong cation exchange (SCX) chromatography, Ti4+-IMAC resulted
n identification of 9000 unique phosphorylation sites from 400 �g
f triple dimethyl labeled MCF-7 digest [10,11].  An alternative
opmental Biology 23 (2012) 836– 842 837

method based on interaction between metal ion and phosphopep-
tide is phosphate precipitation with Ca2+ and Ba2+ [12,13].  Apart
from methods employing immobilized agents, a crystalline form
of calcium phosphate, hydroxyapatite (HAP), has also been used to
enrich phosphopeptides [14,15].

2.2. Metal oxide affinity chromatography (MOAC)

Phosphopeptide enrichment using MOAC was first introduced
in 1997 by Ikegami and Nakamura, who employed titanium dioxide
to enrich partially hydrolyzed phosphoproteins, i.e., phosphopep-
tides [16]. Other groups subsequently applied this method in
phosphoproteomics studies [17–20].  However, TiO2-based MOAC
suffers from low specificity due to the competitive binding of
acidic residues on non-phosphopeptides [21]. To overcome the
problems of TiO2-based MOAC, benzoic acid derivatives such as
2,5-hydroxybenzoic acid (DHB) or phthalic acid were used as
competitive additives [22]. However, these aromatic acids were
too hydrophobic to be removed by the desalting step before
LC–MS/MSMS analysis. Sugiyama et al. developed an aliphatic
hydroxy acid-modified metal oxide chromatography (HAMMOC)
[23], in which an aliphatic hydroxy acid, such as lactic acid, and
phosphate anion form cyclic chelates with one and two units of
TiO2, respectively (Fig. 1). The order of affinity for TiO2 is phos-
phate groups first, followed by lactic acid, while the carboxylic
groups of acidic amino acid residues show the weakest affinity.
When the TiO2 beads are blocked with lactic acid first, phospho-
peptides in the subsequent loading step compete out lactic acid for
TiO2 binding, while acidic non-phosphopeptides remain unbound
because their affinity for TiO2 is weaker than that of lactic acid. The
HAMMOC approach drastically reduces the non-specific binding of
acidic non-phosphorylated peptides to TiO2 and allows enrichment
of phosphopeptides directly from complex cell lysates without
prefractionation, in contrast to other phosphopeptide enrichment
methods, such as IMAC and DHB/phthalate–titanium dioxide chro-
matography [22,24]. In addition, aliphatic hydroxy acids can be
easily removed by desalting with reversed-phase cartridges, which
is necessary for subsequent LC–MS/MS analyses. These findings
were later confirmed by another group, who  used glycolic acid
instead of their original DHB/phthalate methods [25].

Other metal oxides have been used, including ZrO2 [26], AlO3
[27], Nb2O5 [28], SnO2 [29], HfO2 [30], and Ta2O2 [31], but TiO2 is
still the most widely used. Both multiply and singly phosphorylated
peptides bind to TiO2. Singly phosphorylated peptides are eluted
with a typical eluent (pH 10–11.5), but there are several reports
indicating that multiply phosphorylated peptides are also eluted
under different pH conditions [32,33].

Several systematic schemes have been proposed for TiO2
enrichment. Pipette tip-based off-line TiO2 mini-columns have
been widely used for phosphopeptide purification [34,35].  A
2D-LC–MS/MS method employed TiO2 as the first dimension
and reversed-phase material as the second dimension [36,37].
Microfluidic HPLC-Chip/MS was also applied for TiO2-based phos-
phoproteome enrichment [38].

2.3. Antibody-based enrichment for tyrosine phosphorylation

Although tyrosine phosphorylation (pTyr) is encountered less
frequently than serine or threonine phosphorylation (pSer or pThr),
it has a critical role in intercellular signaling mechanisms [39]. As
antibodies for pSer and pThr have only limited specificity, pTyr
antibodies have been mainly used for both enrichment by immuno-

precipitation (IP) and detection by Western blotting [40–42].  The
disadvantage of antibody-based methods is their biased preference
depending on epitope recognition in the peptide sequences and the
need substantial amounts of starting materials, so that challenging
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Fig. 1. Overview of shotg

arge-scale purification is necessary. Nevertheless, in a recent study,
ettenbach et al. identified 3168 unique phosphotyrosine peptides

rom 8 mg  of stimulated HeLa cell peptides using pTyr antibody for
OAC-enriched samples [43].

.4. Ion exchange chromatography

Under an acidic condition (∼pH 2.7), tryptic non-
hosphopeptides possess a net charge of at least 2+ because
f protonation of the N-terminal amino group and C-terminal Arg
r Lys. However, negatively charged phosphate lowers the charge
y one. Ion exchange chromatographic methods, i.e., strong cation
xchange (SCX) with cation analyte or strong anion exchange
SAX) with anion analyte, are based on these differences in the
olution charge states of peptides with or without a phosphate
roup. Using SCX alone, more than 2000 phosphorylation sites
ere identified from 300 �g of the nuclear fraction of HeLa cells

44]. But, peptides that have net zero or even negative charge, such
s phosphopeptides with basic residues or multiply phosphory-
ated peptides, are not well retained on SCX columns. In order to
apture these peptides, ultra acidic strong cation exchange was
ecently introduced [45], in which tandem SCX is performed under
wo different pH conditions (usual and more acidic conditions).
urthermore, based on a comparison among Lys-N, Lys-C and
rypsin, Gauci et al. proposed Lys-N as a complement to trypsin to
btain a greater variety of fraction profiles in SCX [46].

.5. Hydrophilic interaction chromatography (HILIC)
Hydrophilic interaction liquid chromatography (HILIC) fraction-
tes biomolecules based on their polarity (hydrophilicity). Those
olecules are retained either weakly or not at all on reverse-phase
osphoproteome analysis.

columns, which are usually used for phosphoproteomic analy-
sis. Samples are loaded in a high organic solvent concentration
and eluted with a gradient of an aqueous solvent. The strong
hydrophilicity of the phosphate group results an increase in reten-
tion time compared with non-phosphopeptides [47]. Recently,
HILIC was  applied to large-scale analysis and allowed the identifi-
cation of more than 1000 phosphorylated sites from 300 �g of HeLa
cell lysate, in combination of IMAC [48]. Similar to HILIC, electro-
static repulsion hydrophilic interaction chromatography (ERLIC) on
a weak anion exchange (WAX) column has also been evaluated [49].
At low pH, carboxyl groups of Glu and Asp and the C-terminus are
largely protonated and peptides with positively charged N-termini
are electrostatically repelled from the column. However, negatively
charged phosphate groups of phosphopeptides interact electrostat-
ically with WAX  and their retention times are increased compared
with non-phosphopeptides [50].

2.6. Prospects for enrichment methods

The current gold standard for in-depth analysis (i.e., obtaining a
large segment of the phosphoproteome) is a two-step process con-
sisting of fractionation using SCX or HILIC followed by enrichment
using IMAC or TiO2-MOAC. However, as each method is known to
cover different kinds of phosphopeptides with only partial over-
lap [21], sequential elution from IMAC (SiMAC), involving IMAC
enrichment prior to TiO2-MOAC, was developed [51]. This method
enables the separation of mono-phosphorylated peptides (by TiO2)
and multiply phosphorylated peptides (by IMAC) and provided

a 3-fold increase in recovery of multiply phosphorylated pep-
tides. Similarly, optimizing the IMAC protocol in a tandem process
(IMAC–IMAC) has enabled separation of mono-phosphorylated and
multiply phosphorylated peptides [52].
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However, as the number of experimental processes is increased,
oss of samples can become a serious issue. For instance, by omit-
ing the process of injection by autosampler, Masuda et al. achieved
n approximately 80-fold improvement of sensitivity, resulting the
dentification of hundreds of phosphopeptides from 1 �g protein,
onsuming only 10,000 cells [53]. Even though fractionation is a
easonable strategy to reduce the complexity of biological sam-
les, there is a tradeoff of MS  instrument time and sample amount,
hich may  be critical especially for clinical samples [54]. The key to

chieving a comprehensive “one-shot phosphoproteome” method
o cover the whole phosphoproteome in a single MS  analysis is
he improvement of both sensitivity and specificity. For example,
mprovement of peptide separation by LC resulted in an increase in
he number of identified peptides [55,56]. This method should be
pplicable for phosphoproteome analysis to obtain greater num-
ers of identified phosphopeptides.

. Phosphoproteome analysis by LC–MS/MS

.1. Adsorption of phosphopeptides on LC–MS systems

Since the phosphate group has affinity to metal materials, which
re typically used for LC–MS/MS as connectors, tubings, valves
nd so on, phosphopeptides, especially multiply phosphorylated
eptides, are often recovered very poorly. Also, these acidic pep-
ides tend to have lower ionization efficiency of the electrospray
rocess in positive-ion-mode LC–MS/MS. A chemical reaction was
eveloped to specifically transform pSer and pThr by �-elimination
57,58]. Phosphoric acid was reported to be effective as an addi-
ive to increase the recovery [59]. Ethylenediaminetetraacetic acid
EDTA) is another candidate as an additive to increase the number of
dentified phosphopeptides, but it has been reported to cause clog-
ing and destruction of the spray needle and analytical columns due
o precipitation [60,61]. Citrate was selected as an alternative addi-
ive and proved to enhance phosphopeptide identification similarly
o EDTA [62].

.2. Fragmentation methods

After a digested peptide is injected into the MS,  a precursor
on is fragmented into product ions. The abundance and rich-
ess of fragmentation ions are important factors for the effective

dentification of phosphorylated sites in shotgun proteomics. Tech-
ological development in this area has recently been very rapid, and
ery powerful MS  instruments have become available.

.2.1. Collision-induced dissociation (CID) by ion trap
Collision-induced dissociation (CID) is a standard fragmentation

echnique in proteomics and phosphoproteomics. In CID, proto-
ated peptides are accelerated by an electrical potential in the
acuum chamber of the mass spectrometer. Then a neutral gas
e.g., helium, nitrogen or argon) is introduced and bond disruption
ccurs to generate a series of b- and y-ions [63]. Even with low-
nergy CID (less than 100 eV), the O-phosphate bonds in serine- and
hreonine-phosphorylated peptides are labile during this process,
nd neutral loss (elimination of phosphate) of phosphopeptides
ends to dominate over dissociation of the main peptide back-
one. To prevent or minimize neutral loss, pseudo-MS3 [64] or
eutral loss directed MS3 [65] has been developed. In those strate-
ies, product ions generated by neutral loss are again fragmented
o cleave the peptide backbone. A possible issue in CID is inter-
olecular phosphate transfer reaction in the ion trap. Aguiar et al.
sed synthetic peptides to examine this issue, and found that phos-
hate transfer does occur, but only doubly charged precursors form
easurable amounts of transferred fragments. Since only a part of
opmental Biology 23 (2012) 836– 842 839

the ions undergoes the reaction, there is no critical effect on the
precision of site determination [66].

3.2.2. Electron capture dissociation (ECD)/electron transfer
process (ETD)

Electron capture dissociation (ECD) [67] or the related electron
transfer dissociation (ETD) [68,69] was developed as a gentler frag-
mentation technique than CID. Both technologies provide similar
fragmentation patterns, with the generation of c- and z-ions, and
no loss of phosphorylations [68,70,71].  This technology has been
applied to proteome and phosphoproteome studies [72–74].  ETD
and CID can be regarded as complementary strategies, though ETD
is advantageous for site determination [75–77].  These methods
become more efficient as the ratio of charge to number of amino
acid residues in a target peptide is increased. Trypsin, which is gen-
erally utilized for protein digestion, mainly produces 2+ peptides,
which have been shown to be suboptimal for ETD fragmentation
[74–76,78]. Switching the location of the basic residues from the
C-terminal to the N-terminal side of the peptide improves the cov-
erage of peptide sequencing by ETD. In order to generate suitable
digested peptides, an enzyme called Lys-N has been utilized in com-
bination with ETD. Several alternative proteases, such as Lys-C,
Glu-C and chymotrypsin, have also been used in ETD analysis, in
addition to Lys-N [76,79]. Swaney et al. proposed a decision-tree-
based data-dependent MS  approach in which either CID or ETD
was  used for sequencing depending on the characteristics of the
targeted peptides [78].

3.2.3. Higher-energy collisional dissociation (HCD)
Higher-energy collisional dissociation (HCD) was firstly intro-

duced as higher-energy C-trap dissociation [80]. The collision
mechanism of HCD is basically the same as that of CID in triple
quadrupole or Q-TOF type MS,  and the fragmentation patterns are
similar to those obtained with CID, i.e., b- and y-ions are generated.
Because of its ability to detect low-mass fragment ions, HCD is uti-
lized for isobaric tag-based quantitation (e.g., iTRAQ) [81,82],  and
for pTyr determination using immonium ion. Due  to reduced inten-
sity of the neutral loss peak at higher collision energy, HCD produce
clearer fragment ion spectra for pSer- and pThr-containing peptides
[80].

4. Computational analysis

4.1. Phosphorylation site localization

The assignment of phosphorylation sites within the peptide
sequence is not necessarily easy, especially in cases where mul-
tiple phosphorylation sites exist side-by-side on a peptide. Several
software tools have been developed for automatic evaluation of
the reliability of phosphorylation site identification, using Ascore or
PTM score [83,84]. Both are based on a comparison of the calculated
probability of the fragment occurrence with the experimen-
tally obtained spectrum. SIDIC (site-determining ion combination)
adapts basically the same idea, but considers the case that the frag-
ment ion may  contain multiple possible phosphorylation sites and
adopts that case as an identification of ambiguous phosphorylation
sites, which are rejected in the other two algorithms [85]. These
algorithms are for b- and y-ion spectra, which are generated in CID,
but site determination software for ECD/ETD to deal with c- and
z-ions has also been developed [86].

4.2. Public phosphorylation data and prediction tools
With the exponential increase in the number of identified
phosphorylation sites, comprehensive phosphorylation databases
that contain qualitative and quantitative information have become
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vailable as an information source for systems biology; these
nclude Uniprot [87], PhosphoSitePlus [88], Phospho.ELM [89],
nd Phosida [90]. These databases include not only basic protein
nd modification information, but also related information such
s structure, localization, motif sequence, and substrates. Each
atabase has unique features in this regard. Database like human
rotein reference database (HPRD) [91] and NetPhorest [92] col-

ects motif sequences of kinases.
Although MS-based analysis is good at identification of large

umbers of substrates, the upstream kinase is not detectable. But,
he motif sequence can be used to predict the upstream kinase
rom the substrate sequences using Scansite 2.0 [93], KinasePhos2.0
94], GPS2.0 [95], NetPhosK [96], PREDIKIN [97], and NetPhorest
92]. In order to predict kinase-substrate pairing, NetworKIN [98]
ses not only motif information, but also additional comprehen-
ive datasets, such as protein-protein interaction from STRING,
o-localization, transcriptome data, and co-mentions in the litera-
ure. This integrated analysis approach has improved the prediction
ccuracy of NertworKIN by 2.5-fold as compared to motif-based
rediction alone. Motif-X [99] is a web application to extract motif
equences from substrate sequences by calculating the occurrences
f amino acids around phosphorylation sites. PhosphoSitePlus [88]
lso provides a motif analysis tool, which is a modification of the
canProsite tool [100].

. Prospects

Led by technological improvements of MS  and increased sophis-
ication of enrichment strategies, high-throughput detection of
hosphorylation sites has become feasible, and the phosphopro-
eome is being explored. Among enrichment methods presently
vailable, each has a certain preference or bias within phospho-
eptides, so the use of combinations of enrichment methods is a
romising approach to achieve high-coverage proteome detection.
owever, two-step strategies using fractionation and combinations
f multiple enrichment strategies require a lot of MS  instrument
ime and increase the likelihood of sample loss, particularly for
ow-abundance proteins, during the multiple enrichment pro-
esses. Therefore, the key to whole phosphoproteome detection
y MS  analysis will be the development of simple enrichment
rocesses that provide increased selectivity for phosphopeptides
hile maintaining high coverage. Complementary to this will be

he further development of MS  instruments to allow more sensi-
ive and specific detection of the phosphoproteome by increasing
oth the detection sensitivity and the scan speed of ion detec-
ion [101]. Such analytical methods should also be useful for
roteomics, and comparisons of proteome and phosphoproteome
hould throw light on the functional meanings of phosphory-
ation stoichiometry. Improved computational analysis of very
arge phosphorylation datasets will also be important for the
nterpretation of the functional significance of phosphorylation
n biological regulation, especially where multiple phosphoryla-
ions occur cooperatively and are integrated into specific regulatory
athways. Incorporation of other omics datasets, including post-
ranscriptional modification datasets, will also be required to
nderstand in detail the functions and integration of regulatory
athways.
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