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SILAC is based on direct addition of selected stable isotope amino acids into the cell culture
medium, allowing superior quantitative analysis of the cellular proteome compared to other
labeling methods. The great advantages of SILAC lie in its straight-forward implementation,
quantitative accuracy, and reproducibility over chemical labeling or label-free quantification
strategies, favoring its adoption for proteomic research. SILAC has been widely applied to char-
acterize the proteomic changes between different biological samples, to investigate dynamic
changes of protein PTMs, to distinguish specific interacting proteins in interaction proteomic
analysis, and to analyze protein turnover in the proteome-wide scale. The present review sum-
marizes the principles of SILAC technology, its applications in biological research, and the
present state of this technology.
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1 Introduction

MS-based quantitative proteomics has become a powerful
tool in biological research. Since MS is inherently nonquanti-
tative, proteolytic peptides have different mass spectrometric
responses due to their various physicochemical properties
such as size, charge, hydrophobicity. Thus, it is infeasible
to quantify the relative abundance changes between differ-
ent experimental samples in the same MS analysis. To solve
this problem, the stable isotopes are introduced into the pro-
teins or peptides, allowing relative quantification of these
molecules from different samples in the same MS analysis,
which will reduce the variability from sample injection and
ion suppression by MS instruments in different MS runs.
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Based on whether using stable isotope or the method em-
ployed for incorporating stable isotopes, MS-based quanti-
tative proteomic methods are subdivided into three classes,
namely chemical/enzymatic labeling, metabolic labeling, and
label-free. Chemical/enzymatic labeling methods introduce
the mass tags to the proteins or peptides, including ICAT
[1], iTRAQ [2, 3], TMT [4], dimethyl labeling [5, 6], and 18O
labeling [7], while metabolic labeling methods utilize biolog-
ical incorporation of stable isotope labels into proteins in
living cells, including SILAC [8] and 15N labeling [9]. In com-
parison, label-free methods conduct comparison without any
labeling on the proteins or peptides, but by measuring ion
intensity changes in chromatography or counting the num-
ber of fragment spectra identifying peptides of a given protein
(spectrum counting) [10,11]. All of these MS-based quantifica-
tion methods have their particular strengths and weaknesses
(Table 1), therefore, quantitative method should be chosen
according to types of sample and aim of experiments.

SILAC, which was first used in 2002 [8], is a metabolic
labeling strategy employed in quantitative proteomics. Here,
stable isotope-labeled amino acids are added to the growth
medium of living cells, enabling the relative comparison of
the cellular proteome of different states. Because only specific
amino-acid residues are labeled with stable isotopes and used
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Table 1. Characteristics and applications of MS-based quantitative methods

Quantification
methods

Way to
introduce
label

Labeling
level

Sample type Number of
conditions
to be
compared

Quantification
accuracy

Quantitative
proteome
coverage

Linear
dynamic
range

Metabolic labeling
SILAC ex vivo, in

vivo
Protein Cells, expand to tissues

or model organisms
Up to 5 +++ ++ 1–2 log

15N ex vivo, in
vivo

Protein Cells 2 +++ ++ 1–2 log

Chemical labeling
ICAT in vitro Protein Applicable to any sample

(cells, animal, or
human tissue samples)

2 ++ ++ 2 log

iTRAQ in vitro Peptide up to 4 or 8 ++ ++ 2 log
TMT in vitro Peptide up to 6 or 10 ++ ++ 2 log
Dimethyl

labeling
in vitro Peptide 2–3 ++ ++ 2 log

Enzymatic lebeling
18O labeling in vitro Peptide Applicable to any sample 2 ++ ++ 1–2 log

Label free
Ion intensity n.a. n.a. Applicable to any sample No limit + +++ 2–3 log
Spectrum

counting
n.a. n.a. (cells, tissue samples) No limit + +++ 2–3 log

n.a., not applicable; +, good; ++, very good; +++, excellent.

for quantification, this method has great advantages in quan-
titative applications over other metabolic labeling approaches
such as 15N labeling, which replaces all nitrogen atoms of
the proteome. Here, quantification is based on the numbers
of nitrogen atoms in the proteins, which greatly complicates
data analysis.

SILAC is reported to be the most accurate quantitative
MS method [11, 12]. The basis of this is that differentially
treated samples can be combined at the level of intact cells
or protein, namely at the very first step of the experimental
workflow, and can be processed together to minimize exper-
imental error or bias. However, a study shown that iTRAQ
outperforms the method of SILAC in the number of protein
identifications and analysis time [13]. A recent comparison
of SILAC and dimethyl labeling shows that the two methods
have comparable accuracy and quantitative dynamic range,
but SILAC outweights dimethyl labeling in reproducibility
[14]. From this point of view, SILAC is particularly suitable
for studies with extensive sample processing, such as subcel-
lular fractionation, affinity purification of protein complex or
enrichment of peptides with PTMs [14, 15].

One of the few disadvantages of SILAC is the limited num-
ber of cellular states that can be compared, because of the
limited labeling combinations available when using heavy
labeled amino acids. However, the combination of several
SILAC experiments with the same experimental state has al-
lowed for investigation of nine-point dynamic signaling path-
ways [16]. More detailed information for this approach is
provided in the section “Use of SILAC for multiplexed com-
parison.” The advantage of chemical labeling over SILAC is

that it can be used to analyze a wide range of samples, includ-
ing cells, tissues, and body fluids. However, the development
of spike-in SILAC [17] and super-SILAC [18] extends the ap-
plication of SILAC to tissues and body fluids as well.

At present, SILAC is accepted as the best method avail-
able for quantitative proteomics in terms of easy implemen-
tation, quantitative reliability, and robustness [19, 20]. This
review provides an overview of the SILAC technology, includ-
ing its principle, development, and application in biological
research.

2 Principles of SILAC

2.1 Description of the SILAC method

The principle of SILAC is based on metabolically incor-
porating stable isotope labeled amino acids, such as 13C
or 15N-labeled arginine or lysine, into the entire proteome
during protein metabolism, specifically during the process
of cell culturing. In SILAC, two populations of cells are
grown in two different culture media, with the“light”medium
containing amino acid(s) with the natural isotope, and
the“heavy”medium containing stable isotope labeled amino
acid(s). After a sufficient number of cell divisions, at least
five cycles in mammalian cells [21], theoretically all the pro-
teins from the cells cultured in heavy medium contain amino
acids in the heavy state. However, the number of cell divi-
sions required for complete labeling depends on the rate of
protein synthesis, degradation, and turnover, therefore the
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labeling efficiency should be carefully tested prior to quan-
tification. After complete labeling (at least >95% labeling
efficiency), the cell populations are experimentally manipu-
lated and then equal amounts of labeled and unlabeled cells
or protein extracts are mixed. The samples are then digested
into peptides. Finally, the digested peptides are analyzed with
LC-MS/MS. The quantification of SILAC is based on testing
the ratio of introduced isotope-labeled peptides to unlabeled
peptides. Thus, the signal intensities from light and heavy
samples allow for quantitative comparison of their relative
abundances in the mixture.

2.2 Choice of SILAC amino acids

Ideally, the SILAC amino acids should be amino acids es-
sential for the survival of culture cells, which ensures the
only source of the particular amino acid is from the cul-
ture medium. Leucine [8, 22], lysine [23], and methion-
ine [24] are essential amino acids that have been used in
SILAC.

Though arginine is not an essential amino acid, it has
been shown to be essential for many cultured cell lines [25],
and has been used successfully in SILAC labeling [26–28],
despite the occurrence of metabolic conversion of arginine
to proline. Tyrosine is another nonessential amino acid that
has been used in SILAC. Heavy-labeled tyrosine was used to
identify the substrates of tyrosine kinase [29] and to inves-
tigate the dynamics of tyrosine phosphorylation of proteins
[30].

In the earlier SILAC studies, deuterium (2H)-labeled
leucine [8, 22] was selected as the labeled amino acid. How-
ever, a chromatographic shift during the reverse phase
chromatography for the deuterium-labeled peptides compro-
mised the accuracy of quantification [31–33]. Later, 13C or
15N-labeled amino acids were used, because these SILAC pep-
tide pairs coelute during LC-MS/MS analysis. Now, more and
more researchers use a combination of 13C and 15N-labeled
arginine and lysine as labeled amino acids, since trypsin, the
commonly used proteolytic enzyme in proteomics workflow,
specifically cleaves at the carboxyl-termini of lysine and argi-
nine residues [34]. Therefore, the combinations of trypsin
digestion and SILAC labeling with lysine and arginine allows
for quantitation of all tryptic peptides of a protein (except
for the protein C terminus), ultimately resulting in improved
coverage of overall proteomic quantification.

2.3 Metabolic conversion of arginine and proline in

cell lines

Though arginine is commonly used in SILAC, metabolic con-
version of arginine to proline via the arginase pathway has
been observed in a number of cell types, such as Hela [26],
HEK293T [35], and embryonic stem cells [36]. Such conver-
sion has an impact on the accuracy of overall quantitation

as mentioned above. The arginine-to-proline conversion usu-
ally occurs when heavy arginine is provided in the cell cul-
ture medium in excess, which complicates the quantitation
of proline-containing peptides.

Different approaches have been developed to prevent or
correct arginine-to-proline conversion. A widely used solution
is to empirically determine the optimal arginine concentra-
tion to minimize its conversion to proline [37]. However, the
reverse metabolic conversion of proline to arginine can also
occur in low-arginine medium [37]. An alternative method
to prevent the arginine-proline conversion is to supplement
SILAC medium with unlabeled proline [35, 36]. Another de-
scribed method is to replace 12C14N arginine with 12C15N
arginine in the “light” medium, which allows the amount
of converted proline to be normalized by quantifying the
monoisotopic peak in the mass spectra [38]. Furthermore,
several bioinformatics approaches have been developed to
correct the SILAC ratios of proline-containing peptides [39,40]

2.4 Use of SILAC for multiplexed comparison

Most SILAC experiments compare two different cellular
states. With three isotopically distinct forms of arginine and
lysine available, however, comparison of three cell popula-
tions in a single experiment is now possible with the 3-plex
SILAC [27, 41]. With the combination of different isotopic
forms of arginine and lysine, SILAC can be used to com-
pare up to five different cellular states in a single experiment
(Table 2). 5-plex SILAC experiments can be performed with
five isotopically distinct forms of arginine [42]. However, only
the arginine-containing peptides are quantifiable, which un-
derestimates the quantification efficiency of proteome. Now,
5-plex SILAC experiments can be carried out by combining
two 3-plex SILAC experiments with the same experimental
state [28, 43, 44] (Fig. 1).

2.5 SILAC workflow

The SILAC workflow comprises two principle phases, i.e. an
adaptation phase and an experimental phase (Fig. 2). SILAC
use dialyzed serum to grow the cells to avoid free amino acids
that are present in the serum, however, some cell lines may
not grow well in dialyzed media because of the loss of low-
molecular-weight growth factors [45]. Supplemented with a
small percentage of normal serum or purified growth factors
in the growth media will potentially solve the problem [45,46].
Thus, cell lines should be tested before a SILAC-labeling
experiment in the adaptation phase. During the adaptation
phase, cells are grown in the unlabeled and labeled media
until the heavy amino acids are fully incorporated into the
cellular proteins. When the cells have been cultured for the
duration of at least five cell divisions, a small fraction of the
heavy cell population is harvested, lysed and proteins are
digested into peptides. The degree of incorporated SILAC
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Table 2. Recommended amino acids for SILAC experiments

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

2 Plex 12C/14N light amino
acids (K0/R0)

13C6,15N2-lysine+
13C6,15N4-
arginine
(K8/R10)

3 Plex 12C/14N light amino
acids (K0/R0)

D4-lysine/13C6-
arginine
(K4/R6)

13C6,15N2-lysine+
13C6,15N4-
arginine
(K8/R10)

4 Plex 12C/14N light amino
acids (K0/R0)

D4-lysine/13C6-
arginine
(K4/R6)

13C6,15N2-lysine+
13C6,15N4-
arginine
(K8/R10)

13C6,15N2, D9-lysine+
13C6,15N4,
D7-arginine
(K17/R17)

5 Plex 12C6,14N4-arginine
(R0)

15 N4-Arginine (R4) 13 C6-Arginine (R6) 13C6,15N4-arginine
(R10)

13C6,15N4, D7-arginine
(R17)

amino acids is then evaluated by LC-MS/MS. The AUC of
the MS peaks for the heavy and remaining light peptide pairs
is used to evaluate the degree of labeling (Fig. 2A). To over-
come the problem of incomplete incorporation of isotopic
amino acids, several approaches have been developed either
by dataset normalization with bioinformatic tools [47] or by
SILAC label-swap replication experiment [48, 49].

During the experimental phase (Fig. 2B), and after the full
incorporation of heavy amino acids has been confirmed, the
two cell populations are subjected to different treatments ac-
cording to the aim of the study, and then combined equally
prior to subsequent optional subcellular organelle purifica-
tion, cell lysis, protein extraction, and protein digestion. Then
samples are analyzed with LC-MS/MS to identify and quantify
the ratios of heavy peptides to light peptides. Most laborato-
ries use the Orbitrap-based mass spectrometers such as linear
ion-trap Orbitrap (LTQ-OrbitrapVelos) [50] or quadrupole Or-
bitrap (Q-Exactive) [51,52] to perform the SILAC MS analysis.
The advantages of these instruments are their high resolving
power, high mass accuracy, high dynamic range, and high
sequencing speed.

After obtaining high-quality MS data, the identification
and quantification of peptides/proteins is accomplished via
database search software, such as the commercial software
Proteome discovery or freely available software tools such
as MaxQuant [53, 54], Census [40], Trans-proteomic pipeline
(TPP) [55], and pQuant [56]. MaxQuant is a computational
proteomic platform that provides a complete data analysis
workflow from raw MS files to output tables, which contain
detailed information about identified proteins (peptides) and

relative changes in abundance [54]. MaxQuant is by far the
most popular software for the analysis of SILAC data, as it
was first developed for such analysis. In addition to SILAC
data, now label-free quantification and most standard label-
ing techniques such as iTRAQ, TMT, and dimethyl labeling
are supported in MaxQuant. Besides MaxQuant, other quan-
titative software tools also have specificity and features (Table
3), for example, Census [39, 57] and pQuant [56] can handle
the data generated from 15N labeling, which is not included
in MaxQuant analysis. TPP can support not only the CID
(collision-induced dissociation) type of MS/MS data but also
the ETD (electron transfer dissociation) type of MS/MS data
[55]. pQuant improves quantification by minimizing the in-
terference of coeluting ions of similar m/z values [56].

Finally, annotation databases such as GO [58], KEGG [59],
STRING [60], or bioinformatic tools such as GoMiner [61], cy-
toscape [62], DAVID [63] are applied to transfer the proteomic
protein list into meaningful results and biological insights
[64].

3 Applications of SILAC

3.1 Expression proteomics

The most popular application of SILAC is to characterize
global changes in protein expression between different bio-
logical samples, so called expression proteomics [65,66]. The
SILAC technique has been successfully applied to compare
protein expression changes during cell differentiation, such

Figure 1. 5-plex SILAC profiling with
two 3-plex SILAC experiments. 5-plex
SILAC experiments can be carried out
by combining two 3-plex SILAC exper-
iments of one identical experimental
state.
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Figure 2. Workflow for quantitative proteomic ex-
periments using SILAC. The SILAC experiment
consists of two phases: an adaptation phase (A)
and an experimental phase (B). (A) During the
adaptation phase, cells are grown in light and
heavy SILAC media for several cell divisions un-
til full incorporation of the heavy amino acids in
the growing cells. The degree of SILAC amino
acids incorporation can be evaluated by MS anal-
ysis. Depending on the study design, a triple strat-
egy using light, medium, and heavy labeling can
be used. (B) During the experimental phase, after
the full incorporation of SILAC amino acids was
confirmed, the cells populations are experimen-
tally manipulated. Subsequently, the cells popu-
lations or protein lysates are mixed depending on
the study. For sub-proteome analysis, cells pop-
ulations are combined for organelle prefraction-
ation; and for expression proteomics, interaction
proteomics or PTMomics, the extracted protein
lysates are mixed. After digestion of the SILAC-
labeled proteins into peptides, peptides are then
analyzed with LC-MS/MS. The identification and
quantification of peptides is accomplished with
quantitation software such as MaxQuant. In case
of investigating protein–protein interaction, pro-
tein complexes are immuno-precipitated from
the mixture of SILAC-labeled cell lysates. For
PTMomics analysis, SILAC labeling peptides are
subject to a fractionation and an enrichment step
to improve identification of PTM-peptides. Figure
2B courtesy of Prof. G. Giamas [217], adapted with
slight modifications.
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Table 3. Features of different quantitative proteomics software tools

Software Types Supported quantitative
data types

Features References

Proteome
discovery

Commercial
software
from
Thermo
Fisher
Scientific

SILAC, iTRAQ, TMT,
dimethyl labeling,
label-free

Integrates all different steps in
quantitative proteomics experiment
into a single automated workflow. It
supports multiple database search
algorithms (SEQUEST, Z-Core,
MASCOT, etc.) and multiple
dissociation techniques (CID, HCD,
ETD) for more comprehensive
analyses.

Proteome
discoverer
user guide

MaxQuant Freely
available

SILAC, iTRAQ, TMT,
dimethyl labeling,
label-free

The most popular software for the
analysis of SILAC data

[53,54]

Census Freely
available

SILAC, iTRAQ, label-free,
TMT, 18O labeling,15N
labeling

Support low-resolution MS data [39,57]

TPP Freely
available

SILAC, iTRAQ, ICAT Support both CID and ETD type of
MS/MS data

[55]

pQuant Freely
available

SILAC, 15N labeling Minimizing the interference of
coeluting ions of similar m/z values

[56]

ETD, electron transfer dissociation; CID, collision-induced dissociation; HCD, higher energy collisional dissociation.

as muscle cell differentiation [8,46] and adipocyte differentia-
tion [35], or after application of different biological treatments
[67–69], to gain novel insights into the role of differential pro-
teins in specific biological processes.

The greatest advantage of SILAC over other chemical la-
beling methods is that metabolically labeled cell populations
can be combined early before the subsequent subproteome
fractionation or enrichment of PTM-modified peptides, thus
it is suitable for comparing protein expression in the subcel-
lular organelles or particular cell compartments. One of the
interesting applications of SILAC is the study of the secre-
tome [70], which is the sum of all proteins released into the
extracellular environment by a specific cell or cell type [71].
Secreted proteins, including cytokines, interleukins, growth
factors, hormones, and others, all function as key messengers
to coordinate body homeostasis [70]. Cancer cells also secrete
proteins or protein fragments into body fluids such as blood
or urine, and these peptides can be used as biomarkers [72].
SILAC was previously applied for comparisons of secreted
proteins in different cancer cells, such as gastric epithelial
cells [73], pancreatic cancer cells [74], esophageal squamous
cell carcinoma cells [75], malignant glioblastoma cell lines
[76], and colorectal cancer cells with different metastatic ca-
pacity [77]. Though these studies provided a list of secreted
proteins, they did not include any information about their se-
cretion rates, differential secretion between cancers cells and
other normal cancer cell types, a fact that limits the use of
these secreted proteins in clinical diagnostics.

Other interesting targets are membrane proteins, as they
are prime candidates for potential biomarkers, especially in
cancer diagnostics, but also as drug targets. In one study,

SILAC was combined with a membrane purification tech-
nique to find differentially expressed membrane proteins be-
tween normal and malignant breast cancer cells [78]. In other
studies, this combination was applied to compare proteins of
cancer cells with different metastatic capabilities [79–81].

SILAC was also applied to identify differentially expressed
proteins in organelles, such as nucleus [82, 83], nucleolus
[28,84] or �-cell insulin secretory granules [85]. Our laboratory
focuses on the study of mitochondrial function, an essential
organelle that plays important roles in cell life and death [86].
Previously, our lab investigated the changes of mitochondrial
protein expression in pancreatic INS-1� cells in response to
chronic hyperglycemia stimulation, and presented insightful
new details on the effect of glucotoxicity on �-cell mitochon-
dria [87]. Recently, we used SILAC to compare the expression
of mitochondrial protein in the ovarian cancer cell line OV-
CAR8 and its doxorubicin-resistant cell line NCI/ADR_RES,
and found that 122 mitochondrial proteins displayed signifi-
cant changes in the NCI/ADR_RES cells. A subsequent func-
tional study using RNA interference (RNAi) technology ver-
ified that the mitochondrial protein TOP1MT is involved in
doxorubicin resistance in NCI/ADR_RES cells. Besides mi-
tochondrial protein expression, mitochondrial morphology,
localization, and function were also found to be changed
in NCI/ADR_RES cells relative to OVCAR8. Together, these
data indicate that mitochondria present a potential therapeu-
tic target to overcome doxorubicin resistance in ovarian can-
cer cells [88].

SILAC was also applied to identify the genuine compo-
nents in cellular compartment that cannot be isolated in
their pure form, such as lipid rafts [22]. After two populations
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of cells were SILAC-labeled, the heavy amino acid-labeled
population was kept untreated, while the light amino acid-
labeled population was treated with cholesterol-disrupting
drugs to break up lipid rafts. Subsequently, the untreated and
treated cells were combined and the low-density detergent-
resistant fraction was isolated. The genuine components in
the lipid raft exhibited specific quantitative changes, while
the ratios of the nonspecific proteins showed little change
between the two samples.

In conclusion, the combination of SILAC with different
purification techniques has provided valuable information
about the role of “subproteomes” in the cell.

3.2 Dynamic changes of protein PTMs

PTMs are known to play crucial roles in the regulation of
protein function. PTMs can directly affect protein structure,
localization, activity, and interactions with other proteins [89].
Many PTMs act as regulatory switches for various signaling
pathways. Therefore, characterization of these modifications
and their dynamic changes can provide valuable information
for deciphering the mechanism of a specific signal transduc-
tion pathway. The tremendous progress of MS technology in
the past decade made it possible to finally profile PTMs at a
whole-proteome scale.

Protein phosphorylation, one of the most widespread and
important protein PTMs in the cells, plays a key role in al-
most all aspects of cellular activity/function, such as signal
transduction, differentiation, proliferation, and metabolism
[90]. It is estimated that approximately one-thirds of all pro-
teins in eukaryotic cells are phosphorylated at any given time
[91, 92]. Traditionally, 32P-labeling was coupled to 1D- and
2D-gels or Western blotting with phosphosite-specific anti-
bodies to quantify the relative changes in protein phospho-
rylation, however, this method was not suitable for the iden-
tification of novel phosphoproteins. Moreover, this method
cannot identify the precise localization of a phosphorylation
site. However, this information is very important for cell stud-
ies, because different phosphosites in the same protein could
be differentially regulated in different signaling pathways. In
addition to the detection of phosphorylation sites, quantitative
studies of the dynamic changes of phosphorylation events are
also important for understanding cell signaling pathways. In
this regard, it is critically important to quantify the relative
abundance of signaling molecules and their phosphorylation
sites. SILAC coupled with MS allows for accurate, global,
and site-specific quantitation of protein phosphorylation in
the whole proteome [41, 43, 93]. Recent development of pro-
teomic technologies, including phosphopeptide enrichment
techniques, high-accuracy MS technology, and the associated
bioinformatics tools enable quantification of >30 000 phos-
phorylation sites in a single-cell type [16].

For large-scale phosphoproteomic analysis, enrichment of
phosphopeptides is indispensable because of the low abun-
dance and low ionization efficiency of phosphopeptides. Be-

cause of this fact, the signal intensities of phosphopeptides
are easily suppressed by the abundant, nonphosphorylated
peptide ions [94]. Several techniques have been developed
and optimized for enrichment of phosphoproteins [95] and
phosphopeptides [96]. The most popular techniques to-date
are affinity chromatography-based phosphopeptide enrich-
ment technologies such as IMAC [97,98] and titanium dioxide
(TiO2) [99, 100]. Combined with peptide fractionation tech-
niques such as SCX [43, 101] or hydrophilic interaction liq-
uid chromatography [102,103], these phosphopeptide enrich-
ment methods allow for the identification of several thousand
serine/threonine phosphorylation sites. For instance, Gruh-
lerand coworkers used SILAC and IMAC for phosphopeptide
enrichment to quantify phosphorylation changes of proteins
in G-protein-coupled receptor signaling pathways in response
to pheromone signals in yeast [104]. Similar strategies have
been successfully used in other proteomic studies [105, 106].

Thanks to its high affinity and selectivity, enrichment
of phosphopeptides with TiO2 has been widely used for
investigating dynamic signaling pathways. More recently,
Humphrey and coworkers used this technique to analyze
dynamic changes in protein phosphorylation in adipocytes,
following exposure to insulin and identified 37 248 phos-
phorylation sites, making it the largest phosphoproteome re-
ported for a single cell type to date [16]. This strategy has
also been used efficiently to study the dynamics of the EGF
signaling pathway [27, 43, 44] as well as DNA damage re-
sponse [107], to elucidate cellular events underlying the hu-
man embryonic stem cell differentiation [93], to compare the
phosphorylation levels upon EGF stimulation and EGF com-
bined with different kinase inhibitors [108], to investigate the
phosphoproteome changes following knockdown of a spe-
cific phosphatase by RNA interference in the Drosophila cells
[109] or by overexpression of a dominant mutant PIK3CA in
breast epithelial cells [110]. Together, these global and dy-
namic phosphoproteome analyses have opened new perspec-
tives in studying complex biological signaling networks.

However, the low occurrence of tyrosine phosphorylation
compared to serine/threonine phosphorylation makes it diffi-
cult to be identified. Immunoprecipitation with a high-affinity
anti-phosphotyrosine antibody helps to improve the coverage
of tyrosine phosphorylation sites [27, 111–113].

In addition, significant progress has been made in the
global and dynamic analysis of other PTMs, including
acetylation [114–116], glycosylation [117–119], ubiquitination
[120–122], methylation [24,123,124], and palmitoylation [125].
Several studies even investigated the cross-talk of several
PTMs at the global level [126–129], suggesting an interplay
among PTMs in the regulation of cell activities [130].

3.3 Interaction proteomics (interactomics)

Most proteins in cells do not function alone, but perform
particular cellular activities through interacting with other
specific proteins, or through forming protein complexes.
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Protein–protein interactions (PPIs) play key regulatory roles
in various physiological processes, such as signal transduc-
tion, cell growth and proliferation, DNA replication, tran-
scription and translation, and metabolism [131]. Therefore,
identification of PPIs at a global level will provide impor-
tant insights into the regulation of cellular processes. In the
past, genetic methods such as the yeast two-hybrid (Y2H)
were used for comprehensive investigation of PPIs. However,
such techniques suffer from high rates of false-positive and
false-negative signals, mainly because the assay is performed
under nonphysiological conditions [132]. With a considerable
progress of MS technology, as well as the development of tag-
ging methods such as tandem affinity purification [133], it has
recently been possible to reveal a proteome-wide PPI network
in yeast [134, 135].

Though affinity purification coupled with MS has become
one of the most effective approaches to study PPIs [136],
the selectivity, and specificity of the method is compromised
by the nonspecific binding of proteins to the antibodies or
carrier beads [137,138]. However, in combination with quan-
titative proteomic strategy such as ICAT [139, 140] or SILAC
[141], specifically interacting proteins can be efficiently dis-
tinguished from nonspecific background proteins. The abun-
dance of specific interaction partners purified from the bait
sample is significantly higher than the one from the control
sample, resulting in quantified ratios much higher than 1. In
contrast, the abundance of nonspecific background proteins
should be comparable from both the bait and the control
sample, resulting in their ratios being close to 1 (Fig. 3).

To investigate the exogenous PPIs, the bait protein is
expressed in the cells following transient transfection with
an expression vector, the protein complexes are then pull-
downed with tag-specific antibody. To discriminate the spe-
cific interactors, a SILAC-based method called I-DIRT (iso-
topic differentiation of interactions as random or targeted)
was used (Fig. 3A). In I-DIRT technique [142], cells containing
affinity-tagged proteins are grown in light medium and wild-
type cells are grown in heavy medium. Protein complexes are
then immunoaffinity-purified from the equal-mass mixture
of the light and heavy cell lysates. Then, the protein com-
plexes are eluted, digested, and analyzed with LC-MS/MS. In
MS, specific interacting partners recognized as having only or
predominantly light isotopic peaks, while nonspecific inter-
action partners have SILAC ratios close to 1. This strategy has
been successfully applied for the analysis of the interactome
of the adaptor protein Odin involved in the growth factor
signaling pathway [143] and integrin-linked kinase [144], for
determining the insulin-dependent interactions of proteins
with GLUT4 [145]. Finally, SILAC has also been applied to
define membrane protein complexes in yeast [146].

When combined with RNAi, SILAC can also be applied to
detect endogenous PPIs (Fig. 3B). After metabolic labeling
of cells using the SILAC method, the protein of interest is
knocked down by RNAi in either light or heavy sample. The
cell lysates are then incubated with an immobilized antibody
against the protein of interest. Subsequently, the precipitated

proteins are combined, eluted, digested, and finally analyzed
by MS. The target protein and its partners are expected to be
more abundant in the untreated cells relative to knockdown
cells. In contrast, contamination proteins would be present
in similar amounts in both untreated and knockdown cells,
thus specific interactors and contaminations can be clearly
discriminated. This method was termed QUICK (quantita-
tive immunoprecipitation combined with knockdown) [147].
QUICK assesses interactions between untagged endogenous
proteins at their normal cellular levels, and it can therefore
identify protein–protein interactions with very high confi-
dence. Selbach and coworkers used this method first to iden-
tify interaction partners of �-catenin and Cbl [147]. It has also
been applied successfully in multiple myeloma cells for iden-
tification of interacting partners of 14-3-3� [148] and Stat3
[149], but also to investigate the role of BAG3 in human [150],
and to study the molecular functions of Drosophila ISWI,
an ATP-hydrolyzing motor present in different chromatin
remodeling complexes [151].

In addition, SILAC can be used to identify the components
of inducible protein complexes that are formed upon activa-
tion of signaling pathways (Fig. 3C). Blagoev and coworkers
first used SILAC to investigate the EGFR pathway in HeLa
cells, by identifying specific interactors of the SH2 domain
present in the signaling adapter protein Grb2, following EGF
stimulation [141]. Also, three-plex SILAC was applied to de-
termine stimulus-specific interactions between proteins of
the wnt pathway [152].

In cells, the interactions between proteins is usually not
permanent and static (stable PPIs), but mostly transient (dy-
namic PPIs). In the original PAM (purification after mixing)-
SILAC procedure, purification of protein complexes was car-
ried out after mixing the light and heavy cell lysates, and
heavy-light exchange of dynamic interaction partners in the
protein complexes can occur during incubation. Thus, the ra-
tios in relative abundance of these dynamic interactors were
similar to those background proteins, which made it difficult
to effectively distinguish the specific but dynamic interac-
tors from background proteins based on their SILAC ratios
[153]. The MAP (mixing after purification)-SILAC approach
[154, 155] solves this problem by mixing the purified sam-
ples after purification. It has been applied successfully in the
identification of the dynamic interactors in 26S proteasome
complexes [155], COP9 signalosome complexes [156], and
TBP transcription complexes [157].

Besides protein–protein interactions, the SILAC approach
has been applied to the study of protein–bait interactions
using different molecular baits, such as peptides [48,158,159],
DNA [160, 161], RNA [162, 163], small molecules, or drugs
[164, 165].

3.4 Protein turnover

Conventional proteomics compares the difference in pro-
tein expression between two or more different states or
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Figure 3. Quantitative interaction proteomics with SILAC. SILAC-based quantitative proteomics can be used to identify the specifically
interaction proteins in investigating (A) exogenous PPIs, (B) endogenous PPIs, or (C) inducible PPIs. (A) To investigate the exogenous
protein complex, wild-type cells or cells expressed affinity-tagged proteins are grown in light or heavy medium. Then protein complexes
are immunoaffinity-purified from the mixture of the light and heavy cell lysates. (B)To study an endogenous protein complex, the protein
of interest is knocked down by RNAi in cells grown in light or heavy medium. Then protein complexes are immuno-precipitated with the
interested antibody from the mixture of the light and heavy cell lysates. (C) In the case of inducible PPIs, protein complexes are induced by
specific stimulation in cells grown in light or heavy medium, and then immuno-affinity purified from the mixture of the light and heavy cell
lysates. After getting the protein complexes, proteins were digested into peptides and analyzed with LC-MS/MS. The specific interactors
or nonspecific background proteins can be distinguished by their SILAC ratios. However, these PAM methods that mix light and heavy cell
lysates before coIP cannot distinguish the specific but dynamic interactors. This problem can be solved by mixing purified samples after
coIP (MAP methods). Figure 3 courtesy of Prof. S. E. Ong [19], adapted with modifications.

conditions. However, it does not provide information about
the dynamics of protein expression, as the protein abundance
is determined by the balance between protein synthesis and
degradation. Therefore, protein turnover creates an additional
dimension for proteomic studies [166]. Earlier studies of pro-
tein turnover relied on detecting the incorporation of radio-
labeled amino acids into newly translated proteins and either
analyzed bulk protein turnover, or else turnover of individual
proteins [167]. The development of pulsed SILAC (pSILAC),
allows the determination of the turnover rates of large num-
bers of proteins in a single experiment [168–172].

pSILAC is a recently developed modified version of the
SILAC approach. In pSILAC, cells are first cultured in
medium with the normal light (L) amino acids. Then, cells
are transferred to culture medium containing middle (M) or
heavy (H) labeled amino acids for a certain period of time.
From this point time on, cells are pulse-labeled since all newly

synthesized proteins incorporate either the H or the M amino
acids. Subsequently, samples are combined and analyzed
together. The abundance ratio of H/M reflects changes in
protein production. pSILAC has been employed to study
the global protein turnover in yeast [166] and in the nu-
cleus of cultured cells [169]. pSILAC was also used for global
analysis of the dynamic expression of MHC in human cancer
cells [168], protein translation [170, 173], protein degradation
[171], PTMs [174], and also for investigating the impact of
chemical inhibitors on protein synthesis [175]. Furthermore,
pSILAC was applied to assess the dynamics of secreted pro-
tein during osteoblast differentiation [176] and macrophage
activation [177]. In a comprehensive study, Boisvert and
coworkers combined pulse-labeling and subcellular organelle
purification strategy to characterize the expression, localiza-
tion, synthesis, degradation, and turnover rates of human
proteins in different subcellular organelles, and provided a
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system-wide overview of the dynamics of cultured human
cells [172].

Another important application of pSILAC is to quantify
protein expression changes induced by miRNAs [178–181],
which are small noncoding RNAs that regulate gene ex-
pression. To investigate the impact of overexpression or
knockdown of miRNA on the protein translation, Selbach
and coworkers first applied pSILAC to investigate the im-
pact of five human miRNAs on protein synthesis. After in-
duction of miRNA expression, cells were pulse-labeled with
isotope-labeled amino acids, which were incorporated into all
newly synthesized proteins. Subsequent MS analysis allowed
detecting changes in protein production [178]. Recently,
Kaller and coworkers investigated the targets of miR-34a,
itself a transcriptional target of the p53 tumor suppressor
protein [181]. In summary, pSILAC combined with MS-
based proteomics is a powerful strategy to find the targets of
miRNAs and to provide more information about the function
of miRNAs.

4 Developments of SILAC

Though the SILAC method was originally developed for la-
beling mammalian cell lines, it has been expanded to almost
all types of model organisms from bacteria to mammalian
[182], including bacteria Escherichia coli [183, 184] and Bacil-
lus subtilis [185, 186], yeast [104, 187, 188], single-celled proto-
zoan Trypanosoma brucei [189], higher plant model Arabidopsis
thaliana [190], Drosophila melanogaster [191, 192], Caenorhab-
ditis elegans [193, 194], Zebrafish Danio rerio [195, 196], as
well as mouse [197]. Though these model organisms can
be metabolically labeled with SILAC methods, the ways to
incorporate isotopic labels into organisms are quite differ-
ent: mammalian and Arabidopsis thaliana cells incorporate
stable isotopic amino acids by supplementing them in the
growth media, while unicellular organism such as bacteria
and yeast are typically auxotrophic for specific amino acids,
ensuring that all of these amino acids are replaced by their
counterpart labeled amino acids. However, complex organ-
isms such as Drosophila melanogaster, Caenorhabditis elegans,
Zebrafish, and mouse incorporate stable labeling by feeding
with SILAC-labeled Escherichia coli or yeast, or a customed
SILAC diet [198].

The SILAC mouse model has become a powerful tool for
systematic analysis of disease model mice [199] as well as
knockout mice [200,201], thereby improving our understand-
ing of the protein functions in vivo and advancing our knowl-
edge of pathogenic processes.

One of the shortcomings of SILAC is the fact that it cannot
be applied to the study of tissues or body fluids, which greatly
limits its clinical application. However, the development of
spike-in SILAC [17] and super-SILAC [18] partially solved the
problem. During spike-in SILAC, the cells are SILAC-labeled,
and the proteins extracted from the SILAC cells are spiked
into different experimental samples, which are then pro-

cessed and analyzed together. In the MS analysis, the spike-in
SILAC sample is the heavy population, with the light popula-
tion being the real sample. Here, SILAC samples are served
as internal references, to which the experimental samples are
compared. Since the internal standard is identical, the rela-
tive quantification between different samples is feasible and
the fold changes between different samples are the “ratio of
ratios” [17]. Ishihama and coworkers first applied these cell
culture-derived reference standards for mouse-brain quan-
titative proteomics [202]. Therefore, this strategy is now
becoming increasingly popular for SILAC experiments. For
instance, Pan and coworkers compared the changes in pro-
teome changes between mouse primary hepatocytes and a
mouse liver cell line by SILAC labeling the Hepa1-6 cell line
[203]. A similar strategy was applied to compare in vivo the
mitochondrial proteome between brown and white fat cells by
using the SILAC-labeled mitochondrial proteins as internal
references [204]. Combined with phosphoproteomic analysis,
spike-in SILAC was also applied to investigate the in vivo sig-
naling pathway. For instance, Monetti and coworkers used
the SILAC-labeled liver Hepa1-6cells as an internal standard
to analyze the quantitative phosphoproteome of mouse liver
in response to insulin, and provided detailed in vivo phos-
phorylation information for liver tissue [205].

Though spike-in SILAC allows quantification of samples
from tissues or body fluids, it introduces added variability
to the analysis. Moreover, the internal standard used in the
spike-in method, either cell lines or proteins, does not al-
ways contain all the proteins that are present in the ana-
lytical sample. The development of a so-called super-SILAC
method [206] solved this problem, at least partially. During
super-SILAC, a SILAC standard is generated by labeling more
than two cell lines that are representative of the experimen-
tal sample (a super-set of cell lines) [18] or a labeled model
organism [207]. Geiger and coworkers first used this tech-
nique for quantitative analysis of breast cancer tissue, with
the SILAC-labeled protein mix from five different cell lines,
all of which were derived from the same tissue [18]. Recently,
this method was applied to the quantification of the proteomic
differences between synaptic and nonsynaptic mitochondria
in the mouse brain [208]. Combined with different protein
PTM enrichment techniques, super-SILAC has been applied
to compare the levels of phosphorylation [209] and glycosy-
lation [119, 210] in disease, thus providing insights into the
regulation of signaling pathway during pathogenesis.

Super-SILAC has tremendous potential in clinical appli-
cation. It has been used to distinguish histological sub-
types of cancers, namely by comparing their protein expres-
sion patterns and identifying significant differences [211].
For instance, Deeb and coworkers investigated two histo-
logically indistinguishable subtypes of diffuse large B-cell
lymphoma (DLBCL), namely activated B-cell-like (ABC) and
germinal-center B-cell-like (GCB) subtypes. They developed
a super-SILAC mix, which is constructed by combining cell
lysates from B-cell lymphoma cell lines. The super-SILAC mix
was then combined with cell lysates from ABC-DLBCL and
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GCB-DLBCL cell lines, and analyzed via MS. PCA of the data
obtained by super-SILAC allowed the classification of two
cancer subtypes [211]. Furthermore, super-SILAC combined
with N-glycoproteome technology allowed even better differ-
entiation of those two cancer types [210]. Super-SILAC has
also been applied to differentiate two major histological sub-
types of non-small cell lung cancer, namely adenocarcinoma
and squamous cell carcinoma [212] or to study the study a
progression model of breast cancer [213]. In summary, super-
SILAC combined with MS analysis can be used in the clinic as
a reliable and rapid way to diagnose cancer subtypes. Future
applications of super-SILAC in clinical samples will improve
our understanding of disease, and hold the promise for dis-
covering new biomarkers for diagnosis of disease [206, 214].

SILAC-based proteomics is still under development. Re-
cently, a protein quantification method called NeuCode (neu-
tron encoding) was developed by integrating the SILAC and
isobaric tagging methods for multiplexed proteome quantifi-
cation by high-resolution MS [215, 216]. The application of
NeuCode SILAC labeling in yeast cells allowed the monitor-
ing of time-resolved responses of five signaling mutants in a
single 18-plex experiment [216]. This new strategy will expand
the scale of comparative proteome analysis, allowing for its
application in addressing important questions in the fields of
biology.

5 Conclusion

SILAC is a simple, robust, and powerful approach in MS-
based quantitative proteomics. Compared with other chem-
ical labeling or label-free quantitative proteomic techniques,
SILAC has the advantage of quantitative accuracy and repro-
ducibility. SILAC coupled with LC-MS/MS has been widely
applied to characterize protein changes between different
samples, to investigate the dynamics of protein PTMs in re-
sponse to stimuli, to distinguish specific interacting proteins
in the protein–protein interaction networks, and to analyze
cellular protein turnover in the proteome-wide scale. The de-
velopment of spike-in SILAC and super-SILAC technology
allows the application of SILAC technology in the clinic. In
conclusion, SILAC has become an important tool in func-
tional proteomics research to answer important questions in
diverse areas of biomedical research.

The authors would like to thank the members of our lab for
critical reading of this manuscript. This study was supported by
the National Basic Research Program of China (973) (grant no.
2014CBA02003, 2012CB966803). We also thank Dr. T. Tu and
Dr. T. Juelich for linguistic assistance during the preparation of
this manuscript. We apologize to the scientists who made contri-
butions to the field, but have not been cited due to space limita-
tions. The authors have no other relevant affiliations or financial
involvement with any organization or entity with a financial in-
terest in or financial conflict with the subject matter or materials
discussed in the manuscript apart from those disclosed.

The authors have declared no conflict of interest.

6 References

[1] Han, D. K., Eng, J., Zhou, H., Aebersold, R., Quantitative pro-
filing of differentiation-induced microsomal proteins using
isotope-coded affinity tags and mass spectrometry. Nat.
Biotechnol. 2001, 19, 946–951.

[2] Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B.
et al., Multiplexed protein quantitation in Saccharomyces
cerevisiae using amine-reactive isobaric tagging reagents.
Mol. Cell Proteomics 2004, 3, 1154–1169.

[3] Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D. et al., 8-plex
quantitation of changes in cerebrospinal fluid protein ex-
pression in subjects undergoing intravenous immunoglob-
ulin treatment for Alzheimer’s disease. Proteomics 2007, 7,
3651–3660.

[4] Thompson, A., Schafer, J., Kuhn, K., Kienle, S. et al., Tan-
dem mass tags: a novel quantification strategy for com-
parative analysis of complex protein mixtures by MS/MS.
Anal. Chem. 2003, 75, 1895–1904.

[5] Hsu, J. L., Huang, S. Y., Chow, N. H., Chen, S. H., Stable-
isotope dimethyl labeling for quantitative proteomics. Anal.
Chem. 2003, 75, 6843–6852.

[6] Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed,
S., Heck, A. J., Multiplex peptide stable isotope dimethyl
labeling for quantitative proteomics. Nat. Protoc. 2009, 4,
484–494.

[7] Miyagi, M., Rao, K. C., Proteolytic 18O-labeling strategies
for quantitative proteomics. Mass Spectrom. Rev. 2007, 26,
121–136.

[8] Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B.
et al., Stable isotope labeling by amino acids in cell culture,
SILAC, as a simple and accurate approach to expression
proteomics. Mol. Cell Proteomics 2002, 1, 376–386.

[9] Krijgsveld, J., Ketting, R. F., Mahmoudi, T., Johansen, J.
et al., Metabolic labeling of C. elegans and D. melanogaster
for quantitative proteomics. Nat. Biotechnol. 2003, 21, 927–
931.

[10] Neilson, K. A., Ali, N. A., Muralidharan, S., Mirzaei, M. et al.,
Less label, more free: approaches in label-free quantitative
mass spectrometry. Proteomics 2011, 11, 535–553.

[11] Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster,
B., Quantitative mass spectrometry in proteomics: a critical
review. Anal. Bioanal. Chem. 2007, 389, 1017–1031.

[12] Zhang, G., Fenyo, D., Neubert, T. A., Evaluation of the vari-
ation in sample preparation for comparative proteomics
using stable isotope labeling by amino acids in cell culture.
J. Proteome Res. 2009, 8, 1285–1292.

[13] Putz, S. M., Boehm, A. M., Stiewe, T., Sickmann, A., iTRAQ
analysis of a cell culture model for malignant transforma-
tion, including comparison with 2D-PAGE and SILAC. J. Pro-
teome Res. 2012, 11, 2140–2153.

[14] Lau, H. T., Suh, H. W., Golkowski, M., Ong, S. E., Comparing
SILAC- and stable isotope dimethyl-labeling approaches for
quantitative proteomics. J. Proteome Res. 2014, 13, 4164–
4174.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3186 X. Chen et al. Proteomics 2015, 15, 3175–3192

[15] Li, Z., Adams, R. M., Chourey, K., Hurst, G. B. et al., Sys-
tematic comparison of label-free, metabolic labeling, and
isobaric chemical labeling for quantitative proteomics on
LTQ Orbitrap Velos. J. Proteome Res. 2012, 11, 1582–1590.

[16] Humphrey, S. J., Yang, G., Yang, P., Fazakerley, D. J.
et al., Dynamic adipocyte phosphoproteome reveals that
Akt directly regulates mTORC2. Cell Metab. 2013, 17,
1009–1020.

[17] Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S. et al., Use
of stable isotope labeling by amino acids in cell culture as
a spike-in standard in quantitative proteomics. Nat. Protoc.
2011, 6, 147–157.

[18] Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J. R., Mann,
M., Super-SILAC mix for quantitative proteomics of human
tumor tissue. Nat. Methods 2010, 7, 383–385.

[19] Ong, S. E., The expanding field of SILAC. Anal. Bioanal.
Chem. 2012, 404, 967–976.

[20] Mann, M., Fifteen years of stable isotope labeling by amino
acids in cell culture (SILAC). Methods Mol. Biol. 2014, 1188,
1–7.

[21] Mann, M., Functional and quantitative proteomics using
SILAC. Nat. Rev. Mol. Cell Biol. 2006, 7, 952–958.

[22] Foster, L. J., De Hoog, C. L., Mann, M., Unbiased quan-
titative proteomics of lipid rafts reveals high specificity
for signaling factors. Proc. Natl. Acad. Sci. USA 2003, 100,
5813–5818.

[23] Everley, P. A., Krijgsveld, J., Zetter, B. R., Gygi, S. P.,
Quantitative cancer proteomics: stable isotope labeling
with amino acids in cell culture (SILAC) as a tool for
prostate cancer research. Mol. Cell Proteomics 2004, 3,
729–735.

[24] Ong, S. E., Mittler, G., Mann, M., Identifying and quantify-
ing in vivo methylation sites by heavy methyl SILAC. Nat.
Methods 2004, 1, 119–126.

[25] Wheatley, D. N., Scott, L., Lamb, J., Smith, S., Single amino
acid (arginine) restriction: growth and death of cultured
HeLa and human diploid fibroblasts. Cell Physiol. Biochem.
2000, 10, 37–55.

[26] Ong, S. E., Kratchmarova, I., Mann, M., Properties of 13C-
substituted arginine in stable isotope labeling by amino
acids in cell culture (SILAC). J. Proteome Res. 2003, 2, 173–
181.

[27] Blagoev, B., Ong, S. E., Kratchmarova, I., Mann, M., Tempo-
ral analysis of phosphotyrosine-dependent signaling net-
works by quantitative proteomics. Nat. Biotechnol. 2004,
22, 1139–1145.

[28] Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E.
et al., Nucleolar proteome dynamics. Nature 2005, 433,
77–83.

[29] Ibarrola, N., Molina, H., Iwahori, A., Pandey, A., A novel
proteomic approach for specific identification of tyrosine
kinase substrates using [13C] tyrosine. J. Biol. Chem. 2004,
279, 15805–15813.

[30] Tzouros, M., Golling, S., Avila, D., Lamerz, J. et al., Develop-
ment of a 5-plex SILAC method tuned for the quantitation of
tyrosine phosphorylation dynamics. Mol. Cell Proteomics
2013, 12, 3339–3349.

[31] Zhang, R., Sioma, C. S., Wang, S., Regnier, F. E., Fraction-
ation of isotopically labeled peptides in quantitative pro-
teomics. Anal. Chem. 2001, 73, 5142–5149.

[32] Zhang, R., Regnier, F. E., Minimizing resolution of isotopi-
cally coded peptides in comparative proteomics. J. Pro-
teome Res. 2002, 1, 139–147.

[33] Julka, S., Regnier, F., Quantification in proteomics through
stable isotope coding: a review. J. Proteome Res. 2004, 3,
350–363.

[34] Olsen, J. V., Ong, S. E., Mann, M., Trypsin cleaves exclu-
sively C-terminal to arginine and lysine residues. Mol. Cell
Proteomics 2004, 3, 608–614.

[35] Lossner, C., Warnken, U., Pscherer, A., Schnolzer, M.,
Preventing arginine-to-proline conversion in a cell-line-
independent manner during cell cultivation under stable
isotope labeling by amino acids in cell culture (SILAC) con-
ditions. Anal. Biochem. 2011, 412, 123–125.

[36] Bendall, S. C., Hughes, C., Stewart, M. H., Doble, B. et al.,
Prevention of amino acid conversion in SILAC experiments
with embryonic stem cells. Mol. Cell Proteomics 2008, 7,
1587–1597.

[37] Ong, S. E., Mann, M., A practical recipe for stable isotope
labeling by amino acids in cell culture (SILAC). Nat. Protoc.
2006, 1, 2650–2660.

[38] Van Hoof, D., Pinkse, M. W., Oostwaard, D. W., Mummery,
C. L. et al., An experimental correction for arginine-to-
proline conversion artifacts in SILAC-based quantitative
proteomics. Nat. Methods 2007, 4, 677–678.

[39] Park, S. K., Venable, J. D., Xu, T., Yates, J. R. 3rd., A quanti-
tative analysis software tool for mass spectrometry-based
proteomics. Nat. Methods 2008, 5, 319–322.

[40] Park, S. K., Liao, L., Kim, J. Y., Yates, J. R. 3rd., A com-
putational approach to correct arginine-to-proline conver-
sion in quantitative proteomics. Nat. Methods 2009, 6,
184–185.

[41] Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem,
M., Mann, M., Mechanism of divergent growth factor ef-
fects in mesenchymal stem cell differentiation. Science
2005, 308, 1472–1477.

[42] Molina, H., Yang, Y., Ruch, T., Kim, J. W. et al., Temporal
profiling of the adipocyte proteome during differentiation
using a five-plex SILAC based strategy. J. Proteome Res.
2009, 8, 48–58.

[43] Olsen, J. V., Blagoev, B., Gnad, F., Macek, B. et al., Global,
in vivo, and site-specific phosphorylation dynamics in sig-
naling networks. Cell 2006, 127, 635–648.

[44] Dengjel, J., Akimov, V., Olsen, J. V., Bunkenborg, J. et al.,
Quantitative proteomic assessment of very early cellular
signaling events. Nat. Biotechnol. 2007, 25, 566–568.

[45] Gehrmann, M. L., Hathout, Y., Fenselau, C., Evaluation of
metabolic labeling for comparative proteomics in breast
cancer cells. J. Proteome Res. 2004, 3, 1063–1068.

[46] Cui, Z., Chen, X., Lu, B., Park, S. K. et al., Preliminary quan-
titative profile of differential protein expression between
rat L6 myoblasts and myotubes by stable isotope label-
ing with amino acids in cell culture. Proteomics 2009, 9,
1274–1292.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2015, 15, 3175–3192 3187

[47] Pasculescu, A., Schoof, E. M., Creixell, P., Zheng, Y. et al.,
CoreFlow: a computational platform for integration, analy-
sis and modeling of complex biological data. J. Proteomics
2014, 100, 167–173.

[48] Schulze, W. X., Mann, M., A novel proteomic screen for
peptide-protein interactions. J. Biol. Chem. 2004, 279,
10756–10764.

[49] Park, S. S., Wu, W. W., Zhou, Y., Shen, R. F. et al., Ef-
fective correction of experimental errors in quantitative
proteomics using stable isotope labeling by amino acids
in cell culture (SILAC). J. Proteomics 2012, 75, 3720–3732.

[50] Olsen, J. V., Schwartz, J. C., Griep-Raming, J., Nielsen, M.
L. et al., A dual pressure linear ion trap Orbitrap instrument
with very high sequencing speed. Mol. Cell Proteomics
2009, 8, 2759–2769.

[51] Michalski, A., Damoc, E., Hauschild, J. P., Lange, O. et al.,
Mass spectrometry-based proteomics using Q Exactive,
a high-performance benchtop quadrupole Orbitrap mass
spectrometer. Mol. Cell Proteomics 2011, 10, M111.011015.

[52] Kelstrup, C. D., Young, C., Lavallee, R., Nielsen, M. L., Olsen,
J. V., Optimized fast and sensitive acquisition methods for
shotgun proteomics on a quadrupole orbitrap mass spec-
trometer. J. Proteome Res. 2012, 11, 3487–3497.

[53] Cox, J., Mann, M., MaxQuant enables high peptide identi-
fication rates, individualized p.p.b.-range mass accuracies
and proteome-wide protein quantification. Nat. Biotechnol.
2008, 26, 1367–1372.

[54] Tyanova, S., Mann, M., Cox, J., MaxQuant for in-depth anal-
ysis of large SILAC datasets. Methods Mol. Biol. 2014, 1188,
351–364.

[55] Keller, A., Shteynberg, D., Software pipeline and data anal-
ysis for MS/MS proteomics: the trans-proteomic pipeline.
Methods Mol. Biol. 2010, 694, 169–189.

[56] Liu, C., Song, C. Q., Yuan, Z. F., Fu, Y. et al., pQuant improves
quantitation by keeping out interfering signals and evalu-
ating the accuracy of calculated ratios. Anal. Chem. 2014,
86, 5286–5294.

[57] Park, S. K., Yates, J. R. 3rd., Census for proteome quantifi-
cation. Curr. Protoc. Bioinformatics 2010, Chapter 13, Unit
13, 12, 1–11.

[58] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al.,
Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet. 2000, 25, 25–29.

[59] Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori,
M., The KEGG resource for deciphering the genome. Nu-
cleic Acids Res. 2004, 32, D277–D280.

[60] Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S. et al., STRING
8—a global view on proteins and their functional interac-
tions in 630 organisms. Nucleic Acids Res. 2009, 37, D412–
D416.

[61] Zeeberg, B. R., Feng, W., Wang, G., Wang, M. D. et al.,
GoMiner: a resource for biological interpretation of ge-
nomic and proteomic data. Genome Biol. 2003, 4, R28.

[62] Shannon, P., Markiel, A., Ozier, O., Baliga, N. S. et al., Cy-
toscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 2003, 13,
2498–2504.

[63] Huang da, W., Sherman, B. T., Lempicki, R. A., Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc. 2009, 4, 44–57.

[64] Kumar, C., Mann, M., Bioinformatics analysis of mass
spectrometry-based proteomics data sets. FEBS Lett. 2009,
583, 1703–1712.

[65] Cox, J., Mann, M., Quantitative, high-resolution proteomics
for data-driven systems biology. Annu. Rev. Biochem. 2011,
80, 273–299.

[66] Roepstorff, P., Mass spectrometry based proteomics, back-
ground, status and future needs. Protein Cell 2012, 3, 641–
647.

[67] Dong, X., Xiong, L., Jiang, X., Wang, Y., Quantitative pro-
teomic analysis reveals the perturbation of multiple cellular
pathways in jurkat-T cells induced by doxorubicin. J. Pro-
teome Res. 2010, 9, 5943–5951.

[68] Xiong, L., Wang, Y., Quantitative proteomic analysis reveals
the perturbation of multiple cellular pathways in HL-60 cells
induced by arsenite treatment. J. Proteome Res. 2010, 9,
1129–1137.

[69] Zhang, F., Dai, X., Wang, Y., 5-Aza-2′-deoxycytidine induced
growth inhibition of leukemia cells through modulating en-
dogenous cholesterol biosynthesis. Mol. Cell Proteomics
2012, 11, M111.016915.

[70] Meissner, F., Scheltema, R. A., Mollenkopf, H. J., Mann, M.,
Direct proteomic quantification of the secretome of acti-
vated immune cells. Science 2013, 340, 475–478.

[71] Hanash, S., Taguchi, A., The grand challenge to decipher
the cancer proteome. Nat. Rev. Cancer 2010, 10, 652–660.

[72] Hanash, S. M., Pitteri, S. J., Faca, V. M., Mining the plasma
proteome for cancer biomarkers. Nature 2008, 452, 571–
579.

[73] Marimuthu, A., Subbannayya, Y., Sahasrabuddhe, N. A.,
Balakrishnan, L. et al., SILAC-based quantitative proteomic
analysis of gastric cancer secretome. Proteomics Clin. Appl.
2013, 7, 355–366.

[74] Gronborg, M., Kristiansen, T. Z., Iwahori, A., Chang, R. et al.,
Biomarker discovery from pancreatic cancer secretome us-
ing a differential proteomic approach. Mol. Cell Proteomics
2006, 5, 157–171.

[75] Kashyap, M. K., Harsha, H. C., Renuse, S., Pawar, H. et al.,
SILAC-based quantitative proteomic approach to identify
potential biomarkers from the esophageal squamous cell
carcinoma secretome. Cancer Biol. Ther. 2010, 10, 796–810.

[76] Formolo, C. A., Williams, R., Gordish-Dressman, H., Mac-
Donald, T. J. et al., Secretome signature of invasive glioblas-
toma multiforme. J. Proteome Res. 2011, 10, 3149–3159.

[77] Barderas, R., Mendes, M., Torres, S., Bartolome, R. A. et al.,
In-depth characterization of the secretome of colorectal
cancer metastatic cells identifies key proteins in cell adhe-
sion, migration, and invasion. Mol. Cell Proteomics 2013,
12, 1602–1620.

[78] Liang, X., Zhao, J., Hajivandi, M., Wu, R. et al., Quantifica-
tion of membrane and membrane-bound proteins in nor-
mal and malignant breast cancer cells isolated from the
same patient with primary breast carcinoma. J. Proteome
Res. 2006, 5, 2632–2641.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3188 X. Chen et al. Proteomics 2015, 15, 3175–3192

[79] Lund, R., Leth-Larsen, R., Jensen, O. N., Ditzel, H. J., Efficient
isolation and quantitative proteomic analysis of cancer cell
plasma membrane proteins for identification of metastasis-
associated cell surface markers. J. Proteome Res. 2009, 8,
3078–3090.

[80] Leth-Larsen, R., Lund, R., Hansen, H. V., Laenkholm, A. V.
et al., Metastasis-related plasma membrane proteins of hu-
man breast cancer cells identified by comparative quan-
titative mass spectrometry. Mol. Cell Proteomics 2009, 8,
1436–1449.

[81] Luque-Garcia, J. L., Martinez-Torrecuadrada, J. L., Epifano,
C., Canamero, M. et al., Differential protein expression on
the cell surface of colorectal cancer cells associated to tu-
mor metastasis. Proteomics 2010, 10, 940–952.

[82] Hwang, S. I., Lundgren, D. H., Mayya, V., Rezaul, K. et al.,
Systematic characterization of nuclear proteome during
apoptosis: a quantitative proteomic study by differential ex-
traction and stable isotope labeling. Mol. Cell Proteomics
2006, 5, 1131–1145.

[83] Ma, D. J., Li, S. J., Wang, L. S., Dai, J. et al., Temporal and
spatial profiling of nuclei-associated proteins upon TNF-
alpha/NF-kappaB signaling. Cell Res. 2009, 19, 651–664.

[84] Emmott, E., Wise, H., Loucaides, E. M., Matthews, D. A.
et al., Quantitative proteomics using SILAC coupled to LC-
MS/MS reveals changes in the nucleolar proteome in in-
fluenza A virus-infected cells. J. Proteome Res. 2010, 9,
5335–5345.

[85] Schvartz, D., Coute, Y., Brunner, Y., Wollheim, C. B., Sanchez,
J. C., Modulation of neuronal pentraxin 1 expression in
rat pancreatic beta-cells submitted to chronic glucotoxic
stress. Mol. Cell Proteomics 2012, 11, 244–254.

[86] Chen, X., Li, J., Hou, J., Xie, Z., Yang, F., Mammalian mito-
chondrial proteomics: insights into mitochondrial functions
and mitochondria-related diseases. Expert Rev. Proteomics
2010, 7, 333–345.

[87] Chen, X., Cui, Z., Wei, S., Hou, J. et al., Chronic high glucose
induced INS-1beta cell mitochondrial dysfunction: a com-
parative mitochondrial proteome with SILAC. Proteomics
2013, 13, 3030–3039.

[88] Chen, X., Wei, S., Ma, Y., Lu, J. et al., Quantitative pro-
teomics analysis identifies mitochondria as therapeutic tar-
gets of multidrug-resistance in ovarian cancer. Theranos-
tics 2014, 4, 1164–1175.

[89] Mann, M., Jensen, O. N., Proteomic analysis of post-
translational modifications. Nat. Biotechnol. 2003, 21, 255–
261.

[90] Macek, B., Mann, M., Olsen, J. V., Global and site-specific
quantitative phosphoproteomics: principles and applica-
tions. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 199–221.

[91] Mann, M., Ong, S. E., Gronborg, M., Steen, H. et al., Analysis
of protein phosphorylation using mass spectrometry: de-
ciphering the phosphoproteome. Trends Biotechnol. 2002,
20, 261–268.

[92] Ubersax, J. A., Ferrell, J. E., Jr., Mechanisms of specificity
in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 2007,
8, 530–541.

[93] Rigbolt, K. T., Prokhorova, T. A., Akimov, V., Henningsen,
J. et al., System-wide temporal characterization of the pro-
teome and phosphoproteome of human embryonic stem
cell differentiation. Sci. Signal. 2011, 4, rs3.

[94] Thingholm, T. E., Jensen, O. N., Larsen, M. R., Analyti-
cal strategies for phosphoproteomics. Proteomics 2009, 9,
1451–1468.

[95] Guerrera, I. C., Predic-Atkinson, J., Kleiner, O., Soskic, V.,
Godovac-Zimmermann, J., Enrichment of phosphoproteins
for proteomic analysis using immobilized Fe(III)-affinity ad-
sorption chromatography. J. Proteome Res. 2005, 4, 1545–
1553.

[96] Beltran, L., Cutillas, P. R., Advances in phosphopeptide en-
richment techniques for phosphoproteomics. Amino Acids
2012, 43, 1009–1024.

[97] Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke,
D. J. et al., Phosphoproteome analysis by mass spectrom-
etry and its application to Saccharomyces cerevisiae. Nat.
Biotechnol. 2002, 20, 301–305.

[98] Thingholm, T. E., Jensen, O. N., Enrichment and character-
ization of phosphopeptides by immobilized metal affinity
chromatography (IMAC) and mass spectrometry. Methods
Mol. Biol. 2009, 527, 47–56, xi.

[99] Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff,
P., Jorgensen, T. J., Highly selective enrichment of phos-
phorylated peptides from peptide mixtures using titanium
dioxide microcolumns. Mol. Cell Proteomics 2005, 4, 873–
886.

[100] Wu, J., Shakey, Q., Liu, W., Schuller, A., Follettie, M. T.,
Global profiling of phosphopeptides by titania affinity en-
richment. J. Proteome Res. 2007, 6, 4684–4689.

[101] Villen, J., Beausoleil, S. A., Gerber, S. A., Gygi, S. P., Large-
scale phosphorylation analysis of mouse liver. Proc. Natl.
Acad. Sci. USA 2007, 104, 1488–1493.

[102] McNulty, D. E., Annan, R. S., Hydrophilic interaction chro-
matography reduces the complexity of the phosphopro-
teome and improves global phosphopeptide isolation and
detection. Mol. Cell Proteomics 2008, 7, 971–980.

[103] Zarei, M., Sprenger, A., Metzger, F., Gretzmeier, C., Dengjel,
J., Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2
for global phosphoproteomics approaches. J. Proteome
Res. 2011, 10, 3474–3483.

[104] Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P.
et al., Quantitative phosphoproteomics applied to the yeast
pheromone signaling pathway. Mol. Cell Proteomics 2005,
4, 310–327.

[105] Chen, C., Wu, D., Zhang, L., Zhao, Y., Guo, L., Compara-
tive phosphoproteomics studies of macrophage response
to bacterial virulence effectors. J. Proteomics 2012, 77, 251–
261.

[106] Schreiber, T. B., Mausbacher, N., Soroka, J., Wandinger, S.
K. et al., Global analysis of phosphoproteome regulation by
the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
J. Proteome Res. 2012, 11, 2397–2408.

[107] Bennetzen, M. V., Larsen, D. H., Bunkenborg, J., Bartek,
J. et al., Site-specific phosphorylation dynamics of the

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2015, 15, 3175–3192 3189

nuclear proteome during the DNA damage response. Mol.
Cell Proteomics 2010, 9, 1314–1323.

[108] Pan, C., Olsen, J. V., Daub, H., Mann, M., Global effects
of kinase inhibitors on signaling networks revealed by
quantitative phosphoproteomics. Mol. Cell. Proteomics
2009, 8, 2796–2808.

[109] Hilger, M., Bonaldi, T., Gnad, F., Mann, M., Systems-wide
analysis of a phosphatase knock-down by quantitative pro-
teomics and phosphoproteomics. Mol. Cell. Proteomics
2009, 8, 1908–1920.

[110] Wu, X., Renuse, S., Sahasrabuddhe, N. A., Zahari, M. S.
et al., Activation of diverse signalling pathways by onco-
genic PIK3CA mutations. Nat. Commun. 2014, 5, 4961.

[111] Rush, J., Moritz, A., Lee, K. A., Guo, A. et al., Immunoaffinity
profiling of tyrosine phosphorylation in cancer cells. Nat.
Biotechnol. 2005, 23, 94–101.

[112] Rikova, K., Guo, A., Zeng, Q., Possemato, A. et al., Global
survey of phosphotyrosine signaling identifies oncogenic
kinases in lung cancer. Cell 2007, 131, 1190–1203.

[113] Zhang, G., Neubert, T. A., Comparison of three quantitative
phosphoproteomic strategies to study receptor tyrosine ki-
nase signaling. J. Proteome Res. 2011, 10, 5454–5462.

[114] Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L. et al.,
Lysine acetylation targets protein complexes and co-
regulates major cellular functions. Science 2009, 325, 834–
840.

[115] Bennetzen, M. V., Larsen, D. H., Dinant, C., Watanabe, S.
et al., Acetylation dynamics of human nuclear proteins dur-
ing the ionizing radiation-induced DNA damage response.
Cell Cycle 2013, 12, 1688–1695.

[116] Wu, Q., Xu, W., Cao, L., Li, X. et al., SAHA treatment reveals
the link between histone lysine acetylation and proteome
in nonsmall cell lung cancer A549 Cells. J. Proteome Res.
2013, 12, 4064–4073.

[117] Wang, Z., Pandey, A., Hart, G. W., Dynamic interplay be-
tween O-linked N-acetylglucosaminylation and glycogen
synthase kinase-3-dependent phosphorylation. Mol. Cell.
Proteomics 2007, 6, 1365–1379.

[118] Ostasiewicz, P., Zielinska, D. F., Mann, M., Wisniewski, J.
R., Proteome, phosphoproteome, and N-glycoproteome
are quantitatively preserved in formalin-fixed paraffin-
embedded tissue and analyzable by high-resolution mass
spectrometry. J. Proteome Res. 2010, 9, 3688–3700.

[119] Boersema, P. J., Geiger, T., Wisniewski, J. R., Mann, M.,
Quantification of the N-glycosylated secretome by super-
SILAC during breast cancer progression and in human
blood samples. Mol. Cell Proteomics 2013, 12, 158–171.

[120] Meierhofer, D., Wang, X., Huang, L., Kaiser, P., Quantita-
tive analysis of global ubiquitination in HeLa cells by mass
spectrometry. J. Proteome Res. 2008, 7, 4566–4576.

[121] Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D. et al., Quan-
titative proteomics reveals the function of unconventional
ubiquitin chains in proteasomal degradation. Cell 2009,
137, 133–145.

[122] Akimov, V., Rigbolt, K. T., Nielsen, M. M., Blagoev, B.,
Characterization of ubiquitination dependent dynamics

in growth factor receptor signaling by quantitative pro-
teomics. Mol. Biosyst. 2011, 7, 3223–3233.

[123] Zee, B. M., Levin, R. S., Xu, B., LeRoy, G. et al., In vivo
residue-specific histone methylation dynamics. J. Biol.
Chem. 2009, 285, 3341–3350.

[124] Cao, X. J., Zee, B. M., Garcia, B. A., Heavy methyl-SILAC
labeling coupled with liquid chromatography and high-
resolution mass spectrometry to study the dynamics of
site-specific histone methylation. Methods Mol. Biol. 2013,
977, 299–313.

[125] Martin, B. R., Wang, C., Adibekian, A., Tully, S. E., Cravatt, B.
F., Global profiling of dynamic protein palmitoylation. Nat.
Methods 2012, 9, 84–89.

[126] Bonenfant, D., Towbin, H., Coulot, M., Schindler, P. et al.,
Analysis of dynamic changes in post-translational modifi-
cations of human histones during cell cycle by mass spec-
trometry. Mol. Cell. Proteomics 2007, 6, 1917–1932.

[127] Cuomo, A., Moretti, S., Minucci, S., Bonaldi, T., SILAC-based
proteomic analysis to dissect the “histone modification sig-
nature” of human breast cancer cells. Amino Acids 2010,
41, 387–399.

[128] Guan, X., Rastogi, N., Parthun, M. R., Freitas, M. A., Dis-
covery of histone modification crosstalk networks by sta-
ble isotope labeling of amino acids in cell culture mass
spectrometry (SILAC MS). Mol. Cell. Proteomics 2013, 12,
2048–2059.

[129] Zhong, J., Martinez, M., Sengupta, S., Lee, A. et al., Quanti-
tative phosphoproteomics reveals crosstalk between phos-
phorylation and O-GlcNAc in the DNA damage response
pathway. Proteomics 2015, 15, 591–607.

[130] Roux, P. P., Thibault, P., The coming of age of
phosphoproteomics—from large data sets to inference of
protein functions. Mol. Cell. Proteomics 2013, 12, 3453–
3464.

[131] Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U.
et al., Investigation of stable and transient protein-protein
interactions: past, present, and future. Proteomics 2012, 13,
538–557.

[132] Vermeulen, M., Hubner, N. C., Mann, M., High confidence
determination of specific protein-protein interactions us-
ing quantitative mass spectrometry. Curr. Opin. Biotechnol.
2008, 19, 331–337.

[133] Burckstummer, T., Bennett, K. L., Preradovic, A., Schutze, G.
et al., An efficient tandem affinity purification procedure for
interaction proteomics in mammalian cells. Nat. Methods
2006, 3, 1013–1019.

[134] Uetz, P., Giot, L., Cagney, G., Mansfield, T. A. et al.,
A comprehensive analysis of protein-protein interac-
tions in Saccharomyces cerevisiae. Nature 2000, 403,
623–627.

[135] Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D. et al., Systematic
identification of protein complexes in Saccharomyces cere-
visiae by mass spectrometry. Nature 2002, 415, 180–183.

[136] Paul, F. E., Hosp, F., Selbach, M., Analyzing protein-protein
interactions by quantitative mass spectrometry. Methods
2011, 54, 387–395.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3190 X. Chen et al. Proteomics 2015, 15, 3175–3192

[137] Trinkle-Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R. et al.,
Identifying specific protein interaction partners using quan-
titative mass spectrometry and bead proteomes. J. Cell
Biol. 2008, 183, 223–239.

[138] Budayeva, H. G., Cristea, I. M., A mass spectrometry view
of stable and transient protein interactions. Adv. Exp. Med.
Biol. 2014, 806, 263–282.

[139] Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O. et al.,
The study of macromolecular complexes by quantitative
proteomics. Nat. Genet. 2003, 33, 349–355.

[140] Oda, Y., Owa, T., Sato, T., Boucher, B. et al., Quantitative
chemical proteomics for identifying candidate drug targets.
Anal. Chem. 2003, 75, 2159–2165.

[141] Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M. et al., A
proteomics strategy to elucidate functional protein-protein
interactions applied to EGF signaling. Nat. Biotechnol. 2003,
21, 315–318.

[142] Tackett, A. J., DeGrasse, J. A., Sekedat, M. D., Oeffinger, M.
et al., I-DIRT, a general method for distinguishing between
specific and nonspecific protein interactions. J. Proteome
Res. 2005, 4, 1752–1756.

[143] Zhong, J., Chaerkady, R., Kandasamy, K., Gucek, M. et al.,
The interactome of a PTB domain-containing adapter pro-
tein, Odin, revealed by SILAC. J. Proteomics 2010, 74, 294–
303.

[144] Dobreva, I., Fielding, A., Foster, L. J., Dedhar, S., Mapping
the integrin-linked kinase interactome using SILAC. J. Pro-
teome Res. 2008, 7, 1740–1749.

[145] Foster, L. J., Rudich, A., Talior, I., Patel, N. et al., Insulin-
dependent interactions of proteins with GLUT4 revealed
through stable isotope labeling by amino acids in cell cul-
ture (SILAC). J. Proteome Res. 2006, 5, 64–75.

[146] Oeljeklaus, S., Schummer, A., Suppanz, I., Warscheid, B.,
SILAC labeling of yeast for the study of membrane protein
complexes. Methods Mol. Biol. 2014, 1188, 23–46.

[147] Selbach, M., Mann, M., Protein interaction screening by
quantitative immunoprecipitation combined with knock-
down (QUICK). Nat. Methods 2006, 3, 981–983.

[148] Ge, F., Li, W. L., Bi, L. J., Tao, S. C. et al., Identification
of novel 14-3-3zeta interacting proteins by quantitative im-
munoprecipitation combined with knockdown (QUICK). J.
Proteome Res. 2010, 9, 5848–5858.

[149] Zheng, P., Zhong, Q., Xiong, Q., Yang, M. et al., QUICK iden-
tification and SPR validation of signal transducers and ac-
tivators of transcription 3 (Stat3) interacting proteins. J.
Proteomics 2012, 75, 1055–1066.

[150] Chen, Y., Yang, L. N., Cheng, L., Tu, S. et al., Bcl2-associated
athanogene 3 interactome analysis reveals a new role
in modulating proteasome activity. Mol. Cell. Proteomics
2013, 12, 2804–2819.

[151] Bonaldi, T., Straub, T., Cox, J., Kumar, C. et al., Combined
use of RNAi and quantitative proteomics to study gene
function in Drosophila. Mol. Cell 2008, 31, 762–772.

[152] Hilger, M., Mann, M., Triple SILAC to determine stimulus
specific interactions in the Wnt pathway. J. Proteome Res.
2011, 11, 982–994.

[153] Wang, X., Huang, L., Defining dynamic protein interactions
using SILAC-based quantitative mass spectrometry. Meth-
ods Mol. Biol. 2014, 1188, 191–205.

[154] Kito, K., Kawaguchi, N., Okada, S., Ito, T., Discrimination
between stable and dynamic components of protein com-
plexes by means of quantitative proteomics. Proteomics
2008, 8, 2366–2370.

[155] Wang, X., Huang, L., Identifying dynamic interactors of pro-
tein complexes by quantitative mass spectrometry. Mol.
Cell. Proteomics 2008, 7, 46–57.

[156] Fang, L., Wang, X., Yamoah, K., Chen, P. L. et al., Charac-
terization of the human COP9 signalosome complex using
affinity purification and mass spectrometry. J. Proteome
Res. 2008, 7, 4914–4925.

[157] Mousson, F., Kolkman, A., Pijnappel, W. W., Timmers, H. T.,
Heck, A. J., Quantitative proteomics reveals regulation of
dynamic components within TATA-binding protein (TBP)
transcription complexes. Mol. Cell. Proteomics 2008, 7,
845–852.

[158] Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M.,
Cantley, L. C., Pyruvate kinase M2 is a phosphotyrosine-
binding protein. Nature 2008, 452, 181–186.

[159] Hanke, S., Mann, M., The phosphotyrosine interactome of
the insulin receptor family and its substrates IRS-1 and IRS-
2. Mol. Cell. Proteomics 2009, 8, 519–534.

[160] Mittler, G., Butter, F., Mann, M., A SILAC-based DNA protein
interaction screen that identifies candidate binding proteins
to functional DNA elements. Genome Res. 2009, 19, 284–
293.

[161] Viturawong, T., Meissner, F., Butter, F., Mann, M., A DNA-
centric protein interaction map of ultraconserved elements
reveals contribution of transcription factor binding hubs to
conservation. Cell Rep. 2013, 5, 531–545.

[162] Butter, F., Scheibe, M., Morl, M., Mann, M., Unbiased RNA-
protein interaction screen by quantitative proteomics. Proc.
Natl. Acad. Sci. USA 2009, 106, 10626–10631.

[163] Tsai, B. P., Wang, X., Huang, L., Waterman, M. L., Quantita-
tive profiling of in vivo-assembled RNA-protein complexes
using a novel integrated proteomic approach. Mol. Cell.
Proteomics 2011, 10, M110.007385.

[164] Ong, S. E., Schenone, M., Margolin, A. A., Li, X. et al., Iden-
tifying the proteins to which small-molecule probes and
drugs bind in cells. Proc. Natl. Acad. Sci. USA 2009, 106,
4617–4622.

[165] Ong, S. E., Li, X., Schenone, M., Schreiber, S. L., Carr, S. A.,
Identifying cellular targets of small-molecule probes and
drugs with biochemical enrichment and SILAC. Methods
Mol. Biol. 2012, 803, 129–140.

[166] Pratt, J. M., Petty, J., Riba-Garcia, I., Robertson, D. H. et al.,
Dynamics of protein turnover, a missing dimension in pro-
teomics. Mol. Cell. Proteomics 2002, 1, 579–591.

[167] Garlick, P. J., Millward, D. J., An appraisal of techniques for
the determination of protein turnover in vivo. Biochem. J.
1972, 129, 1P.

[168] Milner, E., Barnea, E., Beer, I., Admon, A., The turnover
kinetics of major histocompatibility complex peptides

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2015, 15, 3175–3192 3191

of human cancer cells. Mol. Cell. Proteomics 2006, 5,
357–365.

[169] Lam, Y. W., Lamond, A. I., Mann, M., Andersen, J. S., Analy-
sis of nucleolar protein dynamics reveals the nuclear degra-
dation of ribosomal proteins. Curr. Biol. 2007, 17, 749–760.

[170] Schwanhausser, B., Gossen, M., Dittmar, G., Selbach, M.,
Global analysis of cellular protein translation by pulsed
SILAC. Proteomics 2009, 9, 205–209.

[171] Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S.
J., Beynon, R. J., Turnover of the human proteome: deter-
mination of protein intracellular stability by dynamic SILAC.
J. Proteome Res. 2009, 8, 104–112.

[172] Boisvert, F. M., Ahmad, Y., Gierlinski, M., Charriere, F. et al.,
A quantitative spatial proteomics analysis of proteome
turnover in human cells. Mol. Cell. Proteomics 2011, 11,
M111.011429.

[173] Zhang, L., Zhao, H., Blagg, B. S., Dobrowsky, R. T.,
C-terminal heat shock protein 90 inhibitor decreases
hyperglycemia-induced oxidative stress and improves mi-
tochondrial bioenergetics in sensory neurons. J. Proteome
Res. 2012, 11, 2581–2593.

[174] Zee, B. M., Levin, R. S., Dimaggio, P. A., Garcia, B. A., Global
turnover of histone post-translational modifications and
variants in human cells. Epigenetics Chromatin. 2010, 3,
22.

[175] Huo, Y., Iadevaia, V., Yao, Z., Kelly, I. et al., Stable isotope-
labelling analysis of the impact of inhibition of the mam-
malian target of rapamycin on protein synthesis. Biochem.
J. 2012, 444, 141–151.

[176] Kristensen, L. P., Chen, L., Nielsen, M. O., Qanie, D. W. et al.,
Temporal profiling and pulsed SILAC labeling identify novel
secreted proteins during ex vivo osteoblast differentiation
of human stromal stem cells. Mol. Cell. Proteomics 2012,
11, 989–1007.

[177] Eichelbaum, K., Krijgsveld, J., Rapid temporal dynamics
of transcription, protein synthesis, and secretion during
macrophage activation. Mol. Cell. Proteomics 2014, 13,
792–810.

[178] Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z.
et al., Widespread changes in protein synthesis induced by
microRNAs. Nature 2008, 455, 58–63.

[179] Baek, D., Villen, J., Shin, C., Camargo, F. D. et al., The impact
of microRNAs on protein output. Nature 2008, 455, 64–71.

[180] Ebner, O. A., Selbach, M., Whole cell proteome regulation
by microRNAs captured in a pulsed SILAC mass spectrom-
etry approach. Methods Mol. Biol. 2011, 725, 315–331.

[181] Kaller, M., Liffers, S. T., Oeljeklaus, S., Kuhlmann, K. et al.,
Genome-wide characterization of miR-34a induced changes
in protein and mRNA expression by a combined pulsed
SILAC and microarray analysis. Mol. Cell. Proteomics 2011,
10, M111.010462.

[182] Kirchner, M., Selbach, M., In vivo quantitative proteome
profiling: planning and evaluation of SILAC experiments.
Methods Mol. Biol. 2012, 893, 175–199.

[183] Veenstra, T. D., Martinovic, S., Anderson, G. A., Pasa-Tolic,
L., Smith, R. D., Proteome analysis using selective incorpo-

ration of isotopically labeled amino acids. J. Am. Soc. Mass
Spectrom. 2000, 11, 78–82.

[184] Martinovic, S., Veenstra, T. D., Anderson, G. A., Pasa-Tolic,
L., Smith, R. D., Selective incorporation of isotopically la-
beled amino acids for identification of intact proteins on a
proteome-wide level. J. Mass Spectrom. 2002, 37, 99–107.

[185] Dreisbach, A., Otto, A., Becher, D., Hammer, E. et al., Mon-
itoring of changes in the membrane proteome during sta-
tionary phase adaptation of Bacillus subtilis using in vivo
labeling techniques. Proteomics 2008, 8, 2062–2076.

[186] Soufi, B., Kumar, C., Gnad, F., Mann, M. et al., Stable iso-
tope labeling by amino acids in cell culture (SILAC) applied
to quantitative proteomics of Bacillus subtilis. J. Proteome
Res. 2010, 9, 3638–3646.

[187] Jiang, H., English, A. M., Quantitative analysis of the yeast
proteome by incorporation of isotopically labeled leucine.
J. Proteome Res. 2002, 1, 345–350.

[188] de Godoy, L. M., Olsen, J. V., Cox, J., Nielsen, M. L.
et al., Comprehensive mass-spectrometry-based proteome
quantification of haploid versus diploid yeast. Nature 2008,
455, 1251–1254.

[189] Butter, F., Bucerius, F., Michel, M., Cicova, Z. et al., Compar-
ative proteomics of two life cycle stages of stable isotope-
labeled Trypanosoma brucei reveals novel components of
the parasite’s host adaptation machinery. Mol. Cell. Pro-
teomics 2013, 12, 172–179.

[190] Gruhler, A., Schulze, W. X., Matthiesen, R., Mann, M.,
Jensen, O. N., Stable isotope labeling of Arabidopsis
thaliana cells and quantitative proteomics by mass spec-
trometry. Mol. Cell. Proteomics 2005, 4, 1697–1709.

[191] Sury, M. D., Chen, J. X., Selbach, M., The SILAC fly allows
for accurate protein quantification in vivo. Mol. Cell. Pro-
teomics 2010, 9, 2173–2183.

[192] Chang, Y. C., Tang, H. W., Liang, S. Y., Pu, T. H. et al., Eval-
uation of Drosophila metabolic labeling strategies for in
vivo quantitative proteomic analyses with applications to
early pupa formation and amino acid starvation. J. Pro-
teome Res. 2013, 12, 2138–2150.

[193] Fredens, J., Engholm-Keller, K., Giessing, A., Pultz, D. et al.,
Quantitative proteomics by amino acid labeling in C. ele-
gans. Nat. Methods 2011, 8, 845–847.

[194] Larance, M., Bailly, A. P., Pourkarimi, E., Hay, R. T. et al.,
Stable-isotope labeling with amino acids in nematodes.
Nat. Methods 2011, 8, 849–851.

[195] Westman-Brinkmalm, A., Abramsson, A., Pannee, J., Gang,
C. et al., SILAC zebrafish for quantitative analysis of protein
turnover and tissue regeneration. J. Proteomics 2011, 75,
425–434.

[196] Konzer, A., Ruhs, A., Braun, H., Jungblut, B. et al., Sta-
ble isotope labeling in zebrafish allows in vivo monitoring
of cardiac morphogenesis. Mol. Cell. Proteomics 2013, 12,
1502–1512.

[197] Kruger, M., Moser, M., Ussar, S., Thievessen, I. et al., SILAC
mouse for quantitative proteomics uncovers kindlin-3 as an
essential factor for red blood cell function. Cell 2008, 134,
353–364.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3192 X. Chen et al. Proteomics 2015, 15, 3175–3192

[198] Gouw, J. W., Krijgsveld, J., Heck, A. J., Quantitative pro-
teomics by metabolic labeling of model organisms. Mol.
Cell. Proteomics 2010, 9, 11–24.

[199] Rayavarapu, S., Coley, W., Cakir, E., Jahnke, V. et al., Iden-
tification of disease specific pathways using in vivo SILAC
proteomics in dystrophin deficient mdx mouse. Mol. Cell.
Proteomics 2013, 12, 1061–1073.

[200] Huang, T. C., Sahasrabuddhe, N. A., Kim, M. S., Getnet,
D. et al., Regulation of lipid metabolism by Dicer revealed
through SILAC mice. J. Proteome Res. 2012, 11, 2193–2205.

[201] Konzer, A., Ruhs, A., Braun, T., Kruger, M., Global protein
quantification of mouse heart tissue based on the SILAC
mouse. Methods Mol. Biol. 2013, 1005, 39–52.

[202] Ishihama, Y., Sato, T., Tabata, T., Miyamoto, N. et al., Quan-
titative mouse brain proteomics using culture-derived iso-
tope tags as internal standards. Nat. Biotechnol. 2005, 23,
617–621.

[203] Pan, C., Kumar, C., Bohl, S., Klingmueller, U., Mann, M.,
Comparative proteomic phenotyping of cell lines and pri-
mary cells to assess preservation of cell type-specific func-
tions. Mol. Cell. Proteomics 2009, 8, 443–450.

[204] Forner, F., Kumar, C., Luber, C. A., Fromme, T. et al., Pro-
teome differences between brown and white fat mitochon-
dria reveal specialized metabolic functions. Cell Metab.
2009, 10, 324–335.

[205] Monetti, M., Nagaraj, N., Sharma, K., Mann, M., Large-scale
phosphosite quantification in tissues by a spike-in SILAC
method. Nat. Methods 2011, 8, 655–658.

[206] Shenoy, A., Geiger, T., Super-SILAC: current trends and fu-
ture perspectives. Expert Rev. Proteomics 2015, 12, 13–19.

[207] Geiger, T., Velic, A., Macek, B., Lundberg, E. et al., Initial
quantitative proteomic map of 28 mouse tissues using the
SILAC mouse. Mol. Cell. Proteomics 2013, 12, 1709–1722.

[208] Stauch, K. L., Purnell, P. R., Fox, H. S., Quantitative pro-
teomics of synaptic and nonsynaptic mitochondria: insights

for synaptic mitochondrial vulnerability. J. Proteome Res.
2014, 13, 2620–2636.

[209] Schweppe, D. K., Rigas, J. R., Gerber, S. A., Quantitative
phosphoproteomic profiling of human non-small cell lung
cancer tumors. J. Proteomics 2013, 91, 286–296.

[210] Deeb, S. J., Cox, J., Schmidt-Supprian, M., Mann, M., N-
linked glycosylation enrichment for in-depth cell surface
proteomics of diffuse large B-cell lymphoma subtypes. Mol.
Cell. Proteomics 2014, 13, 240–251.

[211] Deeb, S. J., D’Souza, R. C., Cox, J., Schmidt-Supprian, M.,
Mann, M., Super-SILAC allows classification of diffuse large
B-cell lymphoma subtypes by their protein expression pro-
files. Mol. Cell. Proteomics 2012, 11, 77–89.

[212] Zhang, W., Wei, Y., Ignatchenko, V., Li, L. et al., Proteomic
profiles of human lung adeno and squamous cell carci-
noma using super-SILAC and label-free quantification ap-
proaches. Proteomics 2014, 14, 795–803.

[213] Lund, R. R., Terp, M. G., Laenkholm, A. V., Jensen, O. N.
et al., Quantitative proteomics of primary tumors with vary-
ing metastatic capabilities using stable isotope-labeled pro-
teins of multiple histogenic origins. Proteomics 2012, 12,
2139–2148.

[214] Dittmar, G., Selbach, M., SILAC for biomarker discovery.
Proteomics Clin. Appl. 2015, 9, 301–306.

[215] Hebert, A. S., Merrill, A. E., Bailey, D. J., Still, A.
J. et al., Neutron-encoded mass signatures for multi-
plexed proteome quantification. Nat. Methods 2013, 10,
332–334.

[216] Merrill, A. E., Hebert, A. S., MacGilvray, M. E., Rose, C. M.
et al., NeuCode labels for relative protein quantification.
Mol. Cell. Proteomics 2014, 13, 2503–2512.

[217] Zhang, H., Xu, Y., Papanastasopoulos, P., Stebbing, J., Gia-
mas, G., Broader implications of SILAC-based proteomics
for dissecting signaling dynamics in cancer. Expert Rev.
Proteomics 2014, 11, 713–731.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com


