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Abstract HIV-1 infection cannot be cured as it persists in
latently infected cells that are targeted neither by the immune
system nor by available therapeutic approaches.
Consequently, a lifelong therapy suppressing only the actively
replicating virus is necessary. The latent reservoir has been
defined and characterized in various experimental models
and in human patients, allowing research and development
of approaches targeting individual steps critical for HIV-1 la-
tency establishment, maintenance, and reactivation. However,
additional mechanisms and processes driving the remaining
low-level HIV-1 replication in the presence of the suppressive
therapy still remain to be identified and targeted. Current ap-
proaches toward HIV-1 cure involve namely attempts to reac-
tivate and purge HIV latently infected cells (so-called Bshock
and kill^ strategy), as well as approaches involving gene ther-
apy and/or gene editing and stem cell transplantation aiming at
generation of cells resistant to HIV-1. This review summarizes
current views and concepts underlying different approaches
aiming at functional or sterilizing cure of HIV-1 infection.

Introduction

HIV/AIDS infection can be successfully treated and con-
trolled with the combined antiretroviral therapy (cART)

affecting different steps of HIV-1 replication cycle. Thus,
HIV-1 infection could be viewed as a chronic disease with a
relatively long life expectancy. However, cART, which is still
not available to all in need, cannot cure HIV infection due to
the presence of latently infected reservoir cells. The latent
proviral DNA cannot be recognized by the immune system
nor targeted by cART. Consequently, a lifelong therapy is
necessary, which is expensive and leads to various complica-
tions and treatment failures. Therefore, new approaches to-
ward functional or sterilizing cure are intensively explored –
namely attempts to reactivate and purge HIV-1 latently infect-
ed cells (so-called Bshock and kill^ strategy), as well as ap-
proaches involving gene therapy and/or gene editing and stem
cell transplantation aiming at generation of cells resistant to
HIV-1. The ongoing research focuses especially on the mech-
anisms of establishment and maintenance of the latent reser-
voir, assessment of its size and composition, as well as on
stimulation of the innate and specific immunity to promote
HIV-1 clearance.

HIV-1 latency

Retrovirus replication cycle is specific by a step of reverse
transcription and a consequent stable integration of the provi-
ral DNA into the host cell genome. Depending on the status of
the host cell, either the HIV-1 provirus can be immediately
expressed and the virus replication cycle can proceed further
or the provirus can become dormant and wait until the latently
infected cell encounters the right stimulus (often a specific,
possibly rare antigen) and becomes activated. It is the
very presence of the latently infected cells that makes HIV-1
infection incurable as these cells serve as a source of virus
rebound after a discontinuation or failure of the antiretroviral
therapy. After the activation of the host cell or specific
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changes in the epigenetic regulation, the chromatin status and
availability of transcription and other factors change and HIV-
1 replication can restart (Fig. 1).

HIV-1 persistence during therapy

HIV-1 infects namely CD4+ T lymphocytes but also myeloid
cells like macrophages, microglia, astrocytes, and dendritic
cells, even though to a lesser extent. Acute infection of
CD4+ T cells usually leads to cell death, but occasionally,
these cells survive and revert back to a resting memory state.
Alternatively, latency may be established directly in resting
CD4+ T cells. Resting memory cells, including the latently
infected ones, then persist and/or are replenished by homeo-
static proliferation. In contrast, macrophages are resistant to
cytopathic effects of HIV-1 infection and support virus persis-
tence in various anatomical sanctuaries as tissue resident mac-
rophages (Kim and Siliciano 2016; Kumar et al. 2015;
McKinstry et al. 2010).

After initiation of cART, plasma viremia and the level of
HIV-1-infected cells in peripheral blood decay with a well
characterized kinetics based on populations with a different
turnover contributing to plasma viremia (Hilldorfer et al.
2012) (Fig. 2). A rapid decline of plasma viremia during
first two phases indicates the efficiency of antiretroviral

drugs. Phase I represents the turnover of the free virus
(half-life from minutes to hours) and mainly of productively
infected CD4+ T cells (half-life of 1–2 days; Ho et al. 1995;
Perelson et al. 1997; Perelson et al. 1996; Wei et al. 1995).
Consequently, phase II corresponds to the decay of cells
more resistant to HIV-induced cytopathic effect (partially
activated T cells and cells of the monocyte-macrophage lin-
eage with half-life of 2–4 weeks; Perelson et al. 1997; Shan
and Siliciano 2013). The following phase III with a very low
decay kinetics (half-life of 273 days) proceeds after several
years into phase IV with a remaining stable low level plasma
viremia that does not decrease any more (Hilldorfer et al.
2012; Maldarelli et al. 2007). Despite the very low plasma
viremia below the limit of clinical assays (<50 copies/ml),
which is detectable with only ultrasensitive assays (about 3
copies/ml), cell-associated proviral DNA (prDNA) and RNA
(caRNA) are commonly detected by PCR-based assays in
peripheral blood mononuclear cells (PBMCs) during this
phase (Palmer et al. 2008; Palmer et al. 2003) (Fig. 2).
The presence of the phase IV indicates the existence of ad-
ditional cell populations that do not succumb to virus-
induced cytopathic effects and/or either are refractory to
cART (proviral DNA or transcription cannot be targeted by
cART) or persist in anatomical sanctuaries that are not
accessed by cART. Reactivation of the latently infected cells,
which both persist and are replenished by homeostatic
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Fig. 1 Latency and reactivation
(simplified scheme). HIV-1
latency is characterized by a
repressed chromatin, presence of
histone deacetylases (HDACs),
histone methyltransferases
(HMTs), and DNA methylases
(DMTs), as well as lack of
transcription factors, resulting in a
transcription block. Reactivation
is associated with epigenetic
changes that lead to open
chromatin structure, namely
presence of histone
acetyltransferases (HATs),
nuclear translocation of
transcription initiation factors NF-
κB and NFAT, increased levels of
Tat and formation of its complex
with p-TEFb. Tat-p-TEFb
complex binds to TAR RNA,
resolving promoter-proximal
pausing of RNAP II and allowing
efficient transcription elongation.
p-TEFb can be sequestered in the
7SK snRNP inhibitory complex
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proliferation (Chomont et al. 2009; Kim and Siliciano 2016),
is viewed as the most relevant source of the new HIV RNA
(Shan and Siliciano 2013). However, lower levels of
antiretrovirals (ARV) found in anatomical/immunological
sanctuaries like brain, genital tract, gut mucosa, or lymph
nodes can support the ongoing HIV replication (Fletcher
et al. 2014; Huang et al. 2016; Massanella et al. 2016).
Based on sequence determination of HIV-1 present in lymph
nodes and blood at several time-points after initiation of
cART, the mathematical modeling of virus evolution and
trafficking between the two compartments with low and high
levels of ARV, respectively, supported the view that evolu-
tion of drug-sensitive viruses in lymph nodes can keep
replenishing the viral reservoir despite the apparently effi-
cient cART (Lorenzo-Redondo et al. 2016). Lately, it was
described that SIV/HIV-1 may continue to replicate within B
cell follicles due to follicular exclusion of CD8+ T cells and
dysregulated responses of follicular regulatory T cells (TFR)
and follicular T helper cells (TFH; Fukazawa et al. 2015;
Miles et al. 2015; Saison et al. 2014; Tran et al. 2008).
Furthermore, in addition to latently infected long-lived mem-
ory T cells and tissue resident macrophages (Avalos et al.
2016; Gludish et al. 2015), an evidence for existence of
tissue resident memory T cells (TRM) emerged (Farber
2015; Farber et al. 2014).

Another cause of the residual low-level HIV replication
under cART could involve the immune hyperactivation in-
duced by various mechanisms. In addition to the residual pro-
ductive infection that is likely to rise immune responses, there
is a more frequent (95 %) abortive infection of resting non-
permissive CD4+ T cells. Due to the cytoplasmic DNA-
sensing mechanisms like IFI-16, cGAS, and PQBP-1 (Gao
et al. 2013; Thompson et al. 2014; Yoh et al. 2015), these cells
might die by pyroptosis, a very inflammatory type of pro-
grammed cell death (Doitsh et al. 2014; Monroe et al. 2014).
Furthermore, HIV-1 replication and disruption of the intestinal

barrier lead to microbial translocation, stimulation of innate
immune responses, and depletion of CD4 Th17 cells, a defect
persisting even after initiation of cART (Chege et al. 2011;
Schuetz et al. 2014). Finally, the activation and dysregulated
function of regulatory T cells (Tregs), critical modulators of
immune responses, apparently also contribute the immune
hyperactivation (Mendez-Lagares et al. 2014; Saison et al.
2014). The residual low-level HIV replication that leads to
an elevated immune activation thus further stimulates HIV
replication, generating a vicious cycle.

In summary, HIV persistence during cART is supported by
homeostatic and antigen-induced proliferation of latently in-
fected cells, ongoing replication in the sanctuaries as well as
by increased immune activation and inflammation (Chomont
et al. 2009; Fukazawa et al. 2015; Kim and Siliciano 2016;
Van Lint et al. 2013). Additionally, the latent reservoir is read-
ily being replenished during episodes of viremia due to a
treatment failure or other conditions of incomplete or missing
pharmaceutical control.

Models of HIV-1 latency

Our knowledge of the mechanisms, maintenance, and reacti-
vation of the latent reservoir is based namely on various
in vitro and in vivo models as the presence of latently infected
cells in human body is very low, around 1–10 millions in the
whole organism, and difficult to study (Crooks et al. 2015;
Finzi et al. 1999; Massanella and Richman 2016; Siliciano
et al. 2003).

Individual models of HIV latency reproduce to some extent
certain aspects of the complex situation in vivo and allow for
studies of certain latently infected populations or specific as-
pects of latently infected cells. Models used to study HIV-1
latency in vitro include HIV-infected cell lines (immortalized
lymphocytic or monocytic cells like J-Lat, ACH-2, U1;
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Fig. 2 Comparison of HIV-1
RNA and DNA decay curves
upon introduction of cART. After
initiation of cART, plasma
viremia and the level of HIV-1
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Folia Microbiol



Clouse et al. 1989; Folks et al. 1989; Folks et al. 1987; Jordan
et al. 2003), primary cell models (derived from HIV-1 nega-
tive donor PBMCs by infection with a particular HIV-1 isolate
or a recombinant), and resting CD4 cells (derived fromHIV-1-
infected patients; Spina et al. 2013). While the cell lines are
commonly available and easy to handle, they reveal several
aspects that often make them behave differently from the sit-
uation in vivo (namely, clonality based on the integration site
or mutations of specific HIV-1 or host cell sequences).

Primary cell models might seem to be closer to the situation
in vivo, while the percentage of latently infected cells avail-
able for further studies is much higher than in vivo. Different
primary cell models developed by different laboratories use
either resting or activated CD4+ T cells that are infected with
wild-type (typically NL4-3) or recombinant HIV-1 (often ex-
pressing a fluorescent reporter gene like EGFP) and treated
with combinations of several cytokines or chemokines. After
establishment of the infection, latency is induced by ARVs
followed by reactivation by different means. The individual
models differ in the target cell population, percentage of la-
tently infected cells generated, type and time of readout
(Bosque and Planelles 2009; Gondois-Rey et al. 2006;
Lassen et al. 2012; Saleh et al. 2007; Spina et al. 2013;
Tyagi et al. 2010; Yang et al. 2009b). Nevertheless, it is ques-
tionable how closely these models reflect the situation in vivo,
and how much they are biased due to the experimental setup
and mode of readout.

Resting CD4 cells derived from HIV-1-infected patients
cultured and stimulated ex vivo thus seem to be the most
relevant in vitro model. However, their use is limited by a very
low presence of latently infected cells, high background rate
of defective integrated proviruses, and difficulties of any anal-
ysis due to a very high background of uninfected cells (prob-
lems with sensitivity and specificity).

The in vivo models of HIV latency include namely differ-
ent types of humanized mice and macaques infected with HIV,
SIV, or various recombinants. The advantage of humanized
mice consists in their relative affordability and ease of han-
dling; on the other hand, their preparation is tedious while
graft-versus-host disease (GvHD) and other differences,
namely due to their genetic background, the way of immune
reconstitution with human tissues, and lineage precursors,
may limit their use and relevance of the results.

Humanized mice used for HIV research were originally
based on SCID mice (severe combined immunodeficiency
mice) that were irradiated and then transplanted with fetal
human thymus and liver (SCID-hu Thy/Liv). In this model,
latent infection is established during thymopoiesis (deactiva-
tion phase), leading to generation of latently infected naïve
CD4+ T cells. Among other limitations, this model does not
provide an efficient peripheral reconstitution and human cells
are found in relatively small numbers (Brooks et al. 2001;
Marsden et al. 2012).

Lately, BLT mice (bone marrow-liver-thymus humanized
mice) are considered as a better model for complex studies of
HIV reservoirs and latency reversing agents (LRA) as they
provide a robust peripheral reconstitution. These mice are
most commonly based on irradiated NSG mice (NOD/
SCID-gamma chain null mice) transplanted with fetal human
thymus and liver and then reconstituted with bone marrow or
purified CD34+ stem cells (Donahue and Wainberg 2013).
This particular combination results in high-level systemic re-
constitution of all human leukocyte lineages with improved T
cell maturation and selection in a thymic environment and in
generation of latently infected naïve and resting CD4+ T cells
(Denton et al. 2012). There are also modifications of these
mice using reconstitution with only discrete cell types like T
cells or macrophages (T cell-only mice (ToM); myeloid-only
mice (MoM); Honeycutt et al. 2013; Honeycutt et al. 2016),
allowing studies of the role of the individual cell types in the
establishment of latent reservoir or reactivation.

Although the use of BLT mouse model is valuable for the
HIV studies, its important limitation consists in the develop-
ment of GvHD, typically around 6 months after engraftment
(Karpel et al. 2015). Further, these mice are unable to develop
proper HIV-specific adaptive immune responses consisting in
high levels of hyper-mutated, class-switched IgG antibodies
as human cells of non-hematopoietic origin, namely those
giving rise to stromal cells, are not transplanted, and second-
ary lymphoid organs do not properly develop (Malhotra et al.
2013; Wang et al. 2011).

Yet another BLT model, based on human Rag2−/−γc −/−

mice (Choudhary et al. 2012; Traggiai et al. 2004; Zhang
et al. 2007), was recently developed and led to identification
of central memory CD4+ T cells (TCM) as the main latently
infected population after suppressive cART similarly as in
human (Choudhary et al. 2012; Donahue and Wainberg
2013). This model was further improved by generation of
humanized TKO-BLT mice (triple knockout-BLT mice) on a
C57Bl/6 background (C57BL/6 Rag2−/−γc−/−CD47−/−) in
which the GvDH was much reduced, complement was func-
tional, and secondary lymphoid organs with a well organized
architecture and virus-specific immune responses were devel-
oped (Lavender et al. 2013).

A model closest to HIV-1 infection in human is infection of
non-human primates (NHP), namely rhesus macaques, with
various SIV strains. It is believed that different SIVs crossed
the species barrier into humans many times, namely SIVsmm
naturally infecting sooty mangabeys and SIVcpz infecting
chimpanzees resulted in HIV-2 and certain clades of HIV-1
(Hirsch et al. 1989; Huet et al. 1990; Sharp and Hahn 2011).

The NHP models reveal many important features compa-
rable to HIV-1-infected humans like anatomy, physiology, im-
mune system, infectious agent itself, and susceptibility to an-
tiretroviral treatment (Gardner and Luciw 2008; Policicchio
et al. 2016). The use of NHP models has been essential for
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understanding pathogenesis of HIV/AIDS as well as for stud-
ies of different therapeutic and vaccination approaches. Many
conclusions could be also inferred by comparing immune re-
sponses to SIV infection in the natural and unnatural hosts,
sooty mangabeys and rhesus macaques, respectively, in which
the SIV infection results in non-pathogenic or pathogenic con-
ditions. There is a high viremia in both hosts but a very little
loss of CD4+ T cells and preservation of architecture and
function of lymph nodes in the natural host. In the gut of the
natural host, CD4+ T cells are only moderately depleted and
numbers and functions of Th17 cells remain preserved, while
microbial translocation is lacking. Further, TFH and TCM are
only weakly infected (Ploquin et al. 2016).

Additionally, recombinant viruses like RT-SHIV or SHIV
containing different parts of HIV-1 genome can be used to
overcome certain differences between HIV-1 and SIVs, e.g.,
in studies involving inhibitors specific for HIV reverse tran-
scriptase (Jiang et al. 2009; Ndung’u et al. 2001). One impor-
tant difference in comparison with HIV-1 is that most SIVs
(and HIV-2) encode a vpx protein that allows virus infection
also in non-dividing cells as it targets for degradation cellular
SAMHD-1, an enzyme that would hydrolyze dNTPs and thus
decrease reverse transcription (Hofmann et al. 2012). Despite
many advantages, a major drawback of using macaques con-
sists in their cost and ethical and legal regulations of their use.

Obviously, the most relevant approach to study HIV laten-
cy and reactivation is in HIV-infected human patients in clin-
ical studies. However, performance of clinical studies is strict-
ly regulated, expensive, and must be preceded by extensive
pre-clinical testing (including animal models). Additionally,
human studies never provide really homogeneous and repro-
ducible experimental settings with all necessary controls.

In summary, the results obtained in various in vitro and
in vivo models and in human patients indicate that the latent
HIV-1 reservoir is represented mainly by latently infected
resting CD4+ Tcells, long-lived central memory CD4+ Tcells
(TCM cells), and transitional memory CD4+ T cells (TTM

cells). In addition to these cells, latent reservoir may comprise
also other cell populations like CD34+ hematopoietic progen-
itor cells, naïve CD4+ T cells, CD4+ memory stem cells
(TSCM cells) or γδ T cells, as well as myeloid cells like
macrophages and dendritic cells (Buzon et al. 2014; Carter
et al. 2010; Chomont et al. 2009; Honeycutt et al. 2016;
Soriano-Sarabia et al. 2015; Wightman et al. 2010). The im-
portance of these cells constituting the latent reservoir consists
in their different survivals and stabilities as well as in different
requirements for signaling and activation and thus HIV-1 pro-
virus induction (Archin et al. 2014b).

Assessment of the size of the latent reservoir

Under suppressive cART, plasma viremia (virion-associated
unspliced RNA) is undetectable or below the detection limit of
common commercial assays (<50 copies/ml). However,
markers of immune hyperactivation persist and cell-
associated HIV RNA can be readily detected both in periph-
eral blood and tissues like lymph nodes, tonsils, gut, or testes.
Thus, in order to determine the effect of treatment intensifica-
tion strategies and namely efficiency of LRA explored for
therapeutic reactivation, availability of specific and sensitive
methods allowing an accurate assessment of the size of the
latent reservoir is crucial (Fig. 3).

The latently infected cells can be defined as cells harboring
quiescent, replication-competent provirus. A gold standard in
determination of latently infected cells is a quantitative virus
outgrowth assay (qVOA) that is very material-, labor-, and
cost-demanding. It requires large volumes of patients’ blood
to isolate sufficient numbers of highly purified latently infect-
ed resting CD4+ T cells and plate them in serial dilutions
along with activated donor PBMCs (CD8 negative) or with
a MOLT4/CCR5 cell line. It requires a 2–3-week incubation
with changes of medium and other additives (Finzi et al. 1997;
Massanella and Richman 2016; Siliciano and Siliciano 2005).
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Kiselinova et al. 2014; Procopio
et al. 2015)
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However, this assay apparently underestimates the size of the
latent pool, as it has been already demonstrated that consecu-
tive rounds of stimulation/reactivation of the isolated cells
could lead to increased proportion of the reactivated provi-
ruses (Bruner et al. 2015; Ho et al. 2013). Further, only 1–
2% of the body’s lymphocytes are present in peripheral blood,
while most of them are found in tissues and the distribution of
latently infected cells might not be proportional (Blum and
Pabst 2007; Massanella and Richman 2016). The real size of
the latent reservoir thus might be at least 60× higher than
observed in a common qVOA, complicating the effort to cure
HIV using latency reversal (Bruner et al. 2015; Ho et al.
2013). Importantly, about 10 % of HIV-1 proviruses that re-
main silent after the maximal stimulation were found to be
fully replication competent, suggesting that they might be
reactivated in vivo upon different conditions than those used
ex vivo during qVOA. Also, the induction of intact proviruses
was proposed to be stochastic, dependent on the levels of Tat,
but independent of the cellular activation status (Ho et al.
2013; Weinberger et al. 2005; Weinberger et al. 2008).

An analog of qVOA, mouse virus outgrowth assay
(MVOA), allows to determine virus outgrowth in humanized
mice. It has been recently described to detect latently infected
cells with higher sensitivity than the standard qVOA as a large
number of cells can be used and a GvHD promotes HIV-1
reactivation. Nevertheless, it provides only qualitative results
(Metcalf Pate et al. 2015).

At the other side is a PCR-based determination of the cell-
associated DNA, which apparently overestimates the size of
the latent pool, as most of the integrated proviruses are mutat-
ed or incapable of reactivation for unknown reasons (Ho et al.
2013; Sanchez et al. 1997). Depending on the primer/probe
sequences, total, integrated, or 2-long terminal repeat (2-LTR)
circular DNA can be commonly detected (Murray et al. 2014;
Pasternak et al. 2013). Finally, determination of cell-
associated RNA (caRNA) using various combinations of
PCR-based techniques like seminested RT-qPCR or ddPCR
(Bullen et al. 2014; Kiselinova et al. 2014) seems to provide a
more relevant marker of viral persistence and/or reactivation.
However, it is important to use approaches distinguishing be-
tween commonly present prematurely terminated short gag
transcripts, multiply spliced transcripts (msRNAs), and
unspliced RNA (usRNA). Levels of usRNA are generally
higher and therefore better detectable than msRNA. On the
other hand, determination of msRNA (e.g., tat/rev; Pasternak
et al. 2008) or correctly terminated viral transcripts (using
primers/probe detecting the polyadenylated tail; Shan et al.
2013) better correlates with the ability of the cell to produce
infectious viruses (Bullen et al. 2014; Pasternak et al. 2013).

Based on the PCR detection of tat/rev spliced transcripts, a
new quantitative assay allowing single-cell based determina-
tion of the inducible viral reservoir called TILDA (Tat/rev-
induced limiting dilution assay) was recently presented. The

advantage of this assay is use of only 10 ml of blood, serial
limiting dilutions allowing detection of even single positive
cell, and a good correlation with qVOA (Procopio et al. 2015).

A disadvantage of all PCR-based assays is their inability to
differentiate between RNA that might remain retained in the
nucleus and for this or other reasons not to be translated into a
protein and RNA giving rise to HIV proteins that could be
presented on the cell surface or constitute new virions (Lassen
et al. 2006). Therefore, determination of cell-free RNA
(cfRNA) or p24 Ag in culture supernatant better estimates
virion production. On the other hand, proportion of released
virions and detectable cfRNA is much lower in comparison
with caRNA (1.5 and 7 %, respectively; Cillo et al. 2014).

This problem can be partially solved also by a new assay
termed Prime Flow RNA that combines cell-based detection
of proteins with antibodies and detection of intracellular RNA
with specific probes. It was reported to detect one infected cell
in 104–105 cells (comparable numbers are found in peripheral
blood of patients on cART) (Romerio and Zapata 2015).

Apparently, highly sensitive assays for determination of HIV
proteins in culture supernatant are necessary for a better assess-
ment of the efficiency of LRA. One such fully automated assay
based on a Quanterix Simoa technology could detect low levels
of p24 Ag in cell lysates (3 pg/ml; Howell et al. 2015). Another
approach might employ TaqMan chemistry-based protein as-
says (https://www.thermofisher.com/cz/en/home/life-
science/pcr/real-time-pcr/real-time-pcr-applications/real-time-
pcr-protein-analysis/protein-expression-taqman-assays.
html#workflow).

In summary, assays based on virus outgrowth are very la-
borious and generally underestimate the size of the latent pool
as their efficiency can be increased by repeated cycles of in-
duction of reactivation. On the other hand, technically easier
PCR-based detection of HIV-1 prDNA, or caRNA, overesti-
mates the size of the latent reservoir, as most of viral DNA is
mutated or not transcribed for unknown reasons, while not all
RNA transcripts yield functional viral proteins and/or virions.
Detection of virion RNA, cfRNA, or viral proteins in culture
supernatant is more accurate but less sensitive due to lower
levels of these products. Highly sensitive assays for determi-
nation of viral proteins are therefore needed.

Mechanisms of establishment and maintenance
of the latent reservoir

There are two types of HIV latency. A pre-integration latency
that occurs after infection of non-permissive cells, which is
short-lived as unintegrated viral DNA is recognized by cyto-
plasmic DNA sensors like cGAS or IFI-16 leading to activa-
tion of interferon and inflammasome responses (Gao et al.
2013; Thompson et al. 2014; Yoh et al. 2015). On the other
hand, the post-integration latency occurring in cells that
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become quiescent after the infection is the cause of virus per-
sistence. The latent reservoir is established very early during
the HIV-1 infection and its size can be limited by an early
introduction of cART. It consists of both T cells and myeloid
cells (Marban et al. 2007; Wires et al. 2012), and it is very
stable with half-life determined by qVOA of about 44 months
(Crooks et al. 2015; Siliciano et al. 2003).

A key determinant of the future fate of the HIV-1 provirus
is the site of its integration. Most commonly, sites of HIV-1
insertion are found in intragenic regions of actively tran-
scribed genes (Lewinski et al. 2006; Serrao and Engelman
2016). Perhaps for this reason, the majority of repressed but
inducible proviruses are also located within the introns of the
expressed genes (Lewinski et al. 2005; Shan et al. 2011). The
establishment of HIV latency is thus regulated independently
of the control of expression of the target host genes (Mbonye
and Karn 2014).

Insertion of the HIV-1 provirus in the actively transcribed
genes may result in transcriptional interference, contributing to
the regulation of HIV-1 latency. Divergent orientation of the
cellular promoter and viral LTR can lead to the lack of recruit-
ment of transcription factors, while convergent promoters may
lead to a collision of the transcription machinery and premature
termination of HIV-1 transcription. Parallel orientation of the
HIV LTR located downstream of the cellular promoter can lead
to the viral promoter occlusion by a read-through transcription
from the cellular gene, displacing key transcription factors on
the HIV LTR (Han et al. 2008; Lenasi et al. 2011). In latently
infected cells, a preference for a parallel orientation of the pro-
moters was observed, while there was no preference in acutely
or persistently infected cells, suggesting that transcriptional in-
terference may be one of the important factors in the establish-
ment and maintenance of HIV-1 latency (Shan et al. 2011).

HIV-1 itself does not encode any specific transcription re-
pressors, but high levels of HIV-1 transcription activator Tat
and its interactions with a cellular cofactor p-TEFb, resolving
promoter-proximal pausing of RNA polymerase II (RNAP II)
are absolutely critical for the provirus expression (Fig. 1;
Yamada et al. 2006). In the absence of Tat-pTEFb complex,
transcription efficiency decreases drastically and only short
Gag transcripts are generated (Kao et al. 1987; Lassen et al.
2004; Price 2000). Transcriptional silencing of the proviruses
thus results from a series of epigenetic and non-epigenetic
changes occurring at the promoter region and from processes
during the transcription initiation and elongation phases that
decrease levels of Tat and availability and/or binding of cel-
lular factors (Mbonye and Karn 2014).

In the activated CD4+ T cells, which are productively in-
fected most often, the intracellular milieu with high levels of
cellular transcription factors, namely transcription initiation
factors NF-κB, nuclear factor of activated T cells (NFAT),
and AP-1, drives HIV expression (Mbonye and Karn 2014).
However, as the host cell returns to the resting memory

phenotype, cytoplasmic sequestration of these factors causes
a significant decrease of transcription initiation at the HIV
LTR and allows transcriptional silencing of the provirus, pos-
sibly with help of transcriptional inhibitors (Bodor 2006; He
and Margolis 2002; Tyagi and Karn 2007).

The chromatin structure of the proviral 5′ LTR is a critical
parameter in control of HIVexpression. Regardless of the site
of insertion, 5′ HIV LTR is occupied by nucleosomes Nuc-0
and Nuc-1 in specific positions at the start site, imposing a
block on RNAP II initiation (Verdin et al. 1993). Several neg-
ative DNA-binding factors (e.g., CBF1, YY1, LSF, BRD2,
p50 homodimer; He and Margolis 2002; Karn 2013; Tyagi
and Karn 2007; Williams et al. 2006) then facilitate recruiting
of other repressor complexes and histone- and DNA-
modifying enzymes at both core promoter and enhancer re-
gions. Histones of the nucleosomes at the 5′ LTR of silent
proviruses are deacetylated and trimethylated, which are fea-
tures of the repressive heterochromatin. Specifically, a
trimethyl mark on histone H3 lysine 27 (H3K27me3), gener-
ated through the action of the polycomb repressive complex
PRC2, is a mark of the facultative heterochromatin responsi-
ble for reversible silencing of various inducible genes and
contributes to viral quiescence, including HIV-1. On the other
hand, H3K9me2/3 is linked with the formation of the consti-
tutive heterochromatin during development as well as with the
establishment of HIV-1 latency (Friedman et al. 2011;
Maricato et al. 2015; Matsuda et al. 2015). Further, histone
methyltransferases (HMTs) can be found associated with the
latent proviral LTR (du Chene et al. 2007; Friedman et al.
2011; Imai et al. 2010; Keedy et al. 2009; Lusic et al. 2013).
Namely, a dominant HMT EZH2 constitutes part of the PRC2
complex which serves as a binding platform for additional
chromatin-modifying enzymes, histone deacetylases
(HDACs), and DNA methyltransferases (DNMTs)(Cheng
et al. 2011; Friedman et al. 2011; Tae et al. 2011; Vire et al.
2006). Methylation of DNA (CpG islands; Bednarik et al.
1990) at transcription start site has been suggested to be the
most stable modification of the latent provirus LTR. It might
stabilize DNA and prevent provirus reactivation (Blazkova
et al. 2009; Kauder et al. 2009). Lately, relative frequency of
proviruses with a higher LTR DNA methylation was sug-
gested to be increased by a prolonged ARV treatment or mul-
tiple rounds of reactivation (Trejbalova et al. 2016).

An additional block in HIVexpression may consist in post-
transcriptional processes inhibiting HIV-1 protein expression.
Namely, both unspliced and spliced HIV-1 transcripts may be
retained in nuclei. The export of HIV-1 transcripts is supported
by binding of Rev to Rev response element (RRE) present in
partially spliced and unspliced genomic HIV-1 RNAs and by
the interactions with exportin 1 (Crm-1), a nuclear export fac-
tor. Further association with polypyrimidine tract-binding pro-
tein (PTB) and related factors seems to affect the export effi-
ciency. Thus, unavailability of either factor may promote the
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retention of HIV-1 RNAs in the nucleus (Kula et al. 2013;
Lassen et al. 2004; Lassen et al. 2006; Zolotukhin et al. 2003).

Further, several cellular miRNAs have been reported to
modulate HIV-1 expression by targeting essential cellular co-
factors involved in HIV-1 transcription like PCAF and cyclin
T1. The former is targeted bymiR175p andmiR-20awhile the
latter by miR27b and miR198 (Sung and Rice 2009; Triboulet
et al. 2007). There are also several cellular miRNAs (e.g.,
miR-28, miR-125b, miR-150, miR-223, and miR-382) that
recognize the 3′-end of HIV-1 mRNAs, repressing their ex-
pression in resting CD4+ T cells (Huang et al. 2007). Finally,
there are miRNAs derived from viral sequences (vmiRNAs),
namely from TAR and Nef (miRTAR5p/3p and miRN367,
respectively; Bennasser et al. 2004; Klase et al. 2007;
Omoto et al. 2004; Schopman et al. 2012). Both cellular and
viral miRNAs may cause HIV-1 RNA degradation or ineffi-
cient expression of HIV-1 proteins.

Mechanisms of reactivation

The reactivation of the functional, inducible latent provirus
depends on the chromatin status and availability of the cellular
transcription factors (Fig. 1). Upon appropriate stimulation
and nuclear translocation, NF-κB and NFAT can bind to
HIV LTR if the chromatin landscape of the promoter region
is favorable (Bhatt and Ghosh 2014; Lusic et al. 2013; Ott and
Verdin 2013). The accessibility of the HIV LTR can be affect-
ed by methylation of CpG islands (Bednarik et al. 1990) or
binding of other transcription factors like Sp1 that are able to
promote the chromatin configuration favorable for binding of
the main transcription factors. In fact, Sp1 is required for the
formation of the pre-initiation complex and interacts with
NF-κB (Perkins et al. 1993). NF-κB and NFAT probably bind
in a mutually exclusive, possibly sequential way, as their HIV-
1 LTR-binding sites overlap (Giffin et al. 2003; Mbonye and
Karn 2014). NF-κB is found in cell lines and primary naïve T
cells, while NFAT is typically present in memory T cells
(Dienz et al. 2007). In primary memory T cells, NFAT and
Lck are required for optimal latent virus reactivation and
HIV-1 can be activated in an NF-kB-independent way by
transcription factor DVII-Ets-1, without causing significant
T cell activation (Bosque et al. 2011; Bosque and Planelles
2009; Yang et al. 2009a). On the other hand, NFAT is dispens-
able in Jurkat cell models. NF-κB is commonly activated by
PMA or TNF-α, while NFAT is activated by calcium/
calcineurin signaling (Bosque and Planelles 2009; Chan
et al. 2013; Kim et al. 2011).

Both NF-κB and NFAT recruit CBP/p300 and other histone
acetyltransferases (HATs) (Garcia-Rodriguez and Rao 1998) to
further acetylate Nuc-1 and to attract SWI/SNF chromatin re-
modeling complex. After the minimal initiation and
transcription through the TAR element, RNAP II pauses. If

Tat and p-TEFb, composed of CDK9 and cyclin T1
(Herrmann and Rice 1995; Wei et al. 1998) are available to
bind and form a complex with TAR RNA hairpin and the tran-
scription machinery, kinase activity of p-TEFb mediates phos-
phorylation of negative elongation factors (DSIF and NELF)
and of RNAP II and allows formation of a superelongation
complex and continuation of transcription further into the elon-
gation phase (Fig. 1). Thus, Tat transactivation and its interac-
tion with p-TEFb is absolutely necessary for the efficient
transcription elongation of the HIV provirus. When not
complexed with Tat, pTEFb is sequestered and held inactive
in the transcriptionally inactive 7SK RNP complex containing
7SK small nuclear RNA (7SK snRNA), inhibitory factor
HEXIM1 and RNA binding proteins LARP7 and MePCE.
Yet, Tat may be out-competed by BRD4 in binding to
p-TEFb, leading to p-TEFb targeting to transcription of cellular
genes (Mbonye and Karn 2014).

Besides this conventional view of events underlying the
HIV-1 reactivation, it has been suggested that the decision
between HIV-1 replication and latency can be determined by
a stochastic noise in gene expression similarly as in other cell-
fate decisions. In this view, the probability of HIV-1 reactiva-
tion is increased by a higher rate and variation of fluctuations
in HIV-1 gene expression and further stimulated by Tat-
mediated positive feedback mechanism (Dar et al. 2014; Ho
et al. 2013; Weinberger 2015; Weinberger et al. 2005;
Weinberger et al. 2008).

Latency reversal and purging HIV-1

Latently infected cells represent the major barrier to HIV-1
cure (Donahue and Wainberg 2013). The major reservoir is
considered to reside in resting memory T cells, and therefore,
this population is in the focus of most efforts to decrease the
size of the latent reservoir (Bruner et al. 2015).

The initial attempts to eradicate HIV-1 latently infected
cells were first described by Fauci et al. (Chun et al. 1998;
Chun and Fauci 1999). Later, the term shock and kill strategy
was introduced (Archin et al. 2012; Deeks 2012). In short, it
consists in the attempts to reactivate a dormant provirus silent-
ly present in latently infected cells, namely long-livedmemory
CD4 Tcells, that would lead to death of the cells harboring the
latent provirus and decrease the size of the latent pool in the
presence of cART. Originally, it was assumed that virus reac-
tivation could be achieved with a single agent, namely HDAC
inhibitors (HDACi) or PKC inducers, and that the replication
of the reactivated virus and the virus-induced cytopathic ef-
fects would be sufficient to kill the host cells and thus decrease
the size of the latent reservoir. Today, it is largely accepted that
combinations of two or more agents with different mechanism
of action together with an additional stimulation of anti-HIV
immune responses would be necessary. Namely, improvement
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of cytotoxic responses using engineered dual-affinity (DART)
and broadly specific antibodies (bNAbs) toward HIV-1 are
intensively investigated (Caskey et al. 2015; Sloan et al.
2015). Still, there are doubts if the HIV cure can be ever
achieved because of unknown fraction of the cells remain-
ing refractory to the reactivation strategies. Further, it has
been suggested that a prolonged antiretroviral treatment
together with random or intentional cycles of reactivation
might lead to an increased methylation of HIV-LTR and
thus stabilization of the latent provirus (Trejbalova et al.
2016). Therefore, another logical approach would be to
inhibit the spontaneous reactivation of latent HIV-1
(Mousseau et al. 2015).

Activity of LRA is usually identified in vitro in tissue culture
screens involving various cell lines and primary cells. The effi-
ciency of the selected compounds must then be verified in vivo.
Most intensively investigated LRA, namely those in clinical
trials, involve compounds in use or under development for
treatment of various cancers and other diseases. These are es-
pecially HDACi and PKC agonists (NF-κB inducers). There
are 11 HDACs subdivided in four classes (Mottamal et al.
2015; Wang et al. 2009). Particularly, HDACs 1–3 (class I)
seem to be important in maintaining HIV latency (Keedy
et al. 2009). HDACi non-specifically activate transcription of
many genes by increasing acetylation of the promoter regions,
including HIV LTR. Increased acetylation should modify chro-
matin status and allow for binding of transcription factors,
namely NF-κB and NFAT. Among these, vorinostat (SAHA)
has been the most extensively explored, but newer compounds
with higher potency like givinostat, panobinostat, or
romidepsin seem more promising (Banga et al. 2016). The
ability of individual HDACi alone to induce HIV-1 reactivation
ex vivo, in cells isolated fromHIV-1-infected patients on cART,
apparently depends on specific experimental conditions as well
as on patients’ history, as not all attempts ex vivo were success-
ful (Blazkova et al. 2012; Bullen et al. 2014; Rasmussen et al.
2013). However, lately, vorinostat, panobinostat, romidepsin,
and namely givinostat were found effective in a modified
VOA employing a prolonged or repeated treatment with indi-
vidual HDACi (Banga et al. 2016), repeating the results of
clinical studies, in which vorinostat and some other HDACi
were able to increase levels of caRNA (Archin et al. 2014a;
Rasmussen et al. 2014; Sogaard et al. 2015). Nevertheless in
these studies, the size of the latent reservoir was not found
decreased in vivo, suggesting that combination with other
agents or strategies increasing immunological killing of the
infected cells would be necessary (Rasmussen et al. 2013).
Other classes of chromatin-modifying enzyme inhibitors in-
clude inhibitors of histone methyltransferases (HMTi) like
chaetocin, BIX-01294 or GSK343, or inhibitors of DNAmeth-
yltransferases (DNMTi) like 5-aza-2′deoxycytidine. However,
they are more likely to be effective in combination with other
LRA (Kumar et al. 2015).

The other important classes of LRA represent PKC ago-
nists that induce activation and nuclear translocation NF-κB
and p-TEFb. They can also trigger activation of MAPK and
nuclear translocation of AP1. The natural PKC inducer effec-
tive in HIV-1 reactivation is TNF-α, a cytokine found in-
creased in untreated HIV-1 infection. However, due to its
pro-inflammatory pleiotropic effects, its use as a LRA
in vivo cannot be considered. Similarly, the other very effec-
tive agent of this class, phorbol myristate acetate (PMA), can-
not be considered for therapy as it reveals a strong tumorigenic
potential (Kumar et al. 2015). However, newer PKC inducers
include non-tumorigenic phorbol ester prostratin (Biancotto
et al. 2004; Kulkosky et al. 2001), macrolide lactone
bryostatin-1 (Mehla et al. 2010), or diterpenoids ingenol B
and ingenol-3-angelate (Jiang et al. 2014; Jiang et al. 2015).
PKC inducers downregulate expression of cell surface recep-
tors CD4, CXCR4, or CCR5 in uninfected cells, thus limiting
the spread of the newly released virus (Hezareh et al. 2004;
Jiang et al. 2014; Mehla et al. 2010). Further, PKC was report-
ed to phosphorylate HEXIM1, suggesting that PKC inducers
might affect also this inhibitory protein (Fujinaga et al. 2012).
Hexim phosphorylation is commonly mediated by AKT ki-
nase that can be stimulated by HMBA (Contreras et al. 2007),
leading to the release of p-TEFb from the inhibitory complex
7SK RNP. Yet another compound affecting availability of p-
TEFb is JQ1, bromodomain inhibitor affecting factors BRD2
and BRD4 (Boehm et al. 2013).

Disulfiram, the inhibitor of acetaldehyde dehydrogenase
used in therapy of alcohol abuse, induces degradation of
PTEN, again allowing AKT-mediated phosphorylation of
HEXIM1 (Doyon et al. 2013; Xing et al. 2011). This compound
has been described as an effective LRA in vitro in a relatively
artificial model of primary CD4+ T cells immortalized with the
Bcl-2 protooncogene. However, the expectations of its potency
were not fulfilled as there was no significant effect on the size of
the latent reservoir found in vivo (Spivak et al. 2014).

As mentioned above, combinations of several LRA are
likely to act more efficiently and cause fewer negative side
effects. The examples of such combinations are chromatin-
remodeling compounds, namely HDACi, together with differ-
ent inducers of transcription. Chromatin remodeling com-
pounds can be apparently considered as noise enhancers that
are relatively ineffective in HIV-1 reactivation alone, while
they reveal a synergismwith real transcriptional activators that
are able to increase HIV-1 expression alone (e.g., PKC in-
ducers) (Dar et al. 2014; Kumar et al. 2015).

Apart from the mainstream studies, there are many other
approaches toward latency reversal and HIV cure. Of these,
use of a pro-oxidant gold-based drug Auranofin is of interest
as it was shown to induce a partially selective killing of TCM
and TTM CD4+ T cells, the main reservoir cells containing
the latent HIV-1 (Lewis et al. 2011). Consequently, it was
demonstrated that TCM and TTM CD4+ T lymphocytes are
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more susceptible to the redox stress and apoptosis (Chirullo
et al. 2013).

Our laboratory has demonstrated independently that
Normosang, a hemin containing compound used to treat acute
hepatic porphyria, could strongly potentiate reactivation of the
latent provirus induced by PKC inducers like PMA, TNF-α,
prostratin or bryostatin-1, while it inhibits HIV-1 replication
during the acute infection through its effect on reverse
transcription. The stimulatory effects of Normosang are medi-
ated by a heme/iron-mediated Fenton reaction resulting in the
increased redox stress, while there was no effect on the activa-
tion status of the cells (Melkova et al. 2015a; Melkova et al.
2015b; Shankaran et al. 2011). Based on our results, we
propose a model in which redox-modulating agents induce
chromatin remodeling, affect binding of specific transcription
factors to HIV-LTR, and potentiate HIV-1 expression induced
by PKC or other inducers (Melkova et al. 2015a; Melkova et al.
2015b).

Historically, there is a case of one HIV+ patient that was
administered Normosang and consequently remained p24-
negative for several months (Pavel Martasek, Faculty
General Hospital Prague, personal communication). We sug-
gest that the outcome in this particular patient resulted from
the inhibition of reverse transcription by heme (Levere et al.
1991) together with a short-term reactivation and death of the
infected cells due to heme/iron-mediated redox stress.
Consequently, a stable heme degradation product, antioxidant
bilirubin, might havemediated prolonged inhibitory effects on
HIV-1 reactivation (Melkova et al. 2015a; Melkova et al.
2015b). This scenario would be compatible with the hypoth-
esis of Chirullo et al. (2013) that auranofin decreases numbers
of latently infected TCM and TTM CD4+ T cells by its pro-
oxidant effects and thus reduces size of the HIV latent pool.

The idea of possible involvement and use of redox stress to
purge the latent reservoir is further supported by work of
(Iordanskiy et al. 2015) showing that ionizing radiation alone
was sufficient to activate the HIV-1 LTR and to effectively kill
the infected T cells. Consequently, this group proposed that a
low-dose ionizing radiation could be used therapeutically to
reactivate and kill latently infected reservoir cells (Iordanskiy
and Kashanchi 2016). Additionally, in the Berlin patient, the
only known case of HIV-1 cure, high-dose irradiationwith bone
marrow transplantation from a donor harboring CCR5Δ32mu-
tation with missing CCR5 expression was used, while irradia-
tion was omitted in Boston patients in which virus rebound
occurred (Henrich et al. 2013; Hutter et al. 2015).

Finally, any common infection involves increased genera-
tion of reactive oxygen and nitrogen species. Co-infections are
well-known to increase HIV-1 replication and promote its
spread (Modjarrad and Vermund 2010), while decreased levels
of GSH, indicator of an increased redox stress, have been
described early in HIV infection (Pace and Leaf 1995).
Reactive oxygen and nitrogen species were shown to stimulate

activation of the redox-sensitive transcription factor NF-κB
and LTR-driven expression of reporter genes (Jimenez et al.
2001; Melkova et al. 2000; Pyo et al. 2008). Thus, increased
generation of free radicals is likely to be helpful in the attempts
to eliminate the latent HIV-1 in the presence of cART.

A major concern when considering testing of LRA in vivo
is the induction of immune hyperstimulation upon reactivation
of the latent HIV-1 and development of a harmful cytokine
storm. On the other hand, it is not clear if any significant
latency reversal is achievable without increased cytokine
levels (Marsden et al. 2015). However, specific anti-HIV im-
mune responses are generally hampered or dysfunctional.
Further, it was shown that both HDACi (romidepsin,
panobinostat) and PKC agonists (prostratin and bryostatin-1,
but not ingenol B) inhibited HIV-specific T cell proliferation
(Clutton et al. 2015).

Based on clinical studies, it has been widely accepted that
stimulation or improved function of immune responses in ad-
dition to LRAwould be necessary in order to achieve death of
reactivated cells and thus decrease the size of the latent reser-
voir. Synergistic effects of different agents should also de-
crease the doses and/or negative side effects of individual
compounds.

Summary/conclusions

In conclusion, in view of the currently described sources of the
remaining low-level HIV-1 replication in the presence of sup-
pressive cART, additional mechanisms and processes promot-
ing HIV-1 persistence remain to be identified. Any attempt to
achieve HIV-1 cure by latency reversal should involve com-
bination of several LRA with different mechanism of action
together with stimulation or improvement of immune re-
sponses toward infected cells. To validate the efficiency of
individual approaches, development of sufficiently sensitive
and specific methods allowing accurate determination of the
size of the latent reservoir and its changes is necessary.
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